Global existence and stability of some semilinear problems
Archivum mathematicum, Tome 36 (2000) no. 1, pp. 33-44 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove global existence and stability results for a semilinear parabolic equation, a semilinear functional equation and a semilinear integral equation using an inequality which may be viewed as a nonlinear singular version of the well known Gronwall and Bihari inequalities.
We prove global existence and stability results for a semilinear parabolic equation, a semilinear functional equation and a semilinear integral equation using an inequality which may be viewed as a nonlinear singular version of the well known Gronwall and Bihari inequalities.
Classification : 34D05, 34G20, 34K05, 34K20, 35B35, 35K55
Keywords: semilinear parabolic equation; functional differential equation; integrodifferential equation; integral equation fractional evolution equation; global existence; stability; variation of parameters
@article{ARM_2000_36_1_a4,
     author = {Kirane, M. and Tatar, N.-E.},
     title = {Global existence and stability of some semilinear problems},
     journal = {Archivum mathematicum},
     pages = {33--44},
     year = {2000},
     volume = {36},
     number = {1},
     mrnumber = {1751612},
     zbl = {1048.34102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a4/}
}
TY  - JOUR
AU  - Kirane, M.
AU  - Tatar, N.-E.
TI  - Global existence and stability of some semilinear problems
JO  - Archivum mathematicum
PY  - 2000
SP  - 33
EP  - 44
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a4/
LA  - en
ID  - ARM_2000_36_1_a4
ER  - 
%0 Journal Article
%A Kirane, M.
%A Tatar, N.-E.
%T Global existence and stability of some semilinear problems
%J Archivum mathematicum
%D 2000
%P 33-44
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a4/
%G en
%F ARM_2000_36_1_a4
Kirane, M.; Tatar, N.-E. Global existence and stability of some semilinear problems. Archivum mathematicum, Tome 36 (2000) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a4/

[1] G. Butler, T. Rogers: A generalization of a lemma of Bihari and applications to pointwise estimates for integral equations. J. Math. Anal. and Appl. 33 No 1 (1971), 77–81. | MR | Zbl

[2] G. DaPrato, M. Iannelli: Regularity of solutions of a class of linear integrodifferential equations in Banach spaces. J. Integral Equations Appl. 8 (1985), 27–40. | MR

[3] W. E. Fitzgibbon: Semilinear functional differential equations in Banach space. J. Diff. Eq. 29 (1978), 1–14. | MR | Zbl

[4] A. Friedman: Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969. | MR | Zbl

[5] Y. Fujita: Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27 (1990), 309–321. | MR | Zbl

[6] H. Hattori, J. H. Lightbourne: Global existence and blow up for a semilinear integral equation. J. Integral Equations Appl. V2, No4 (1990), 529–546. | MR

[7] D. Henry: Geometric theory of semilinear parabolic equations. Springer-Verlag, Berlin, Heidelberg, New York, 1981. | MR | Zbl

[8] H. Hoshino: On the convergence properties of global solutions for some reaction-diffusion systems under Neumann boundary conditions. Diff. and Int. Eq. V9 No4 (1996), 761–778. | MR | Zbl

[9] M. Kirane, N. Tatar: Asymptotic stability and blow up for a fractional evolution equation. submitted.

[10] M. Medved’: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. and Appl. 214 (1997), 349–366. | MR | Zbl

[11] M. Medved’: Singular integral inequalities and stability of semilinear parabolic equations. Archivum Mathematicum (Brno) Tomus 24 (1998), 183–190. | MR | Zbl

[12] M. W. Michalski: Derivatives of noninteger order and their applications. ”Dissertationes Mathematicae”, Polska Akademia Nauk, Instytut Matematyczny, Warszawa 1993. | MR | Zbl

[13] M. Miklavčič: Stability for semilinear equations with noninvertible linear operator. Pacific J. Math. 1, 118 (1985), 199–214. | MR

[14] S. M. Rankin: Existence and asymptotic behavior of a functional differential equation in a Banach space. J. Math. Anal. Appl. 88 (1982), 531–542. | MR

[15] R. Redlinger: On the asymptotic behavior of a semilinear functional differential equation in Banach space. J. Math. Anal. Appl. 112 (1985), 371–377. | MR | Zbl

[16] C. Travis, G. Webb: Existence and stability for partial functional differential equations. Trans. Amer. Math. Soc. 200 (1974), 395–418. | MR | Zbl

[17] C. Travis, G. Webb: Existence, stability and compacteness in the $\alpha $-norm for partial functional differential equations. Trans. Amer. Math. Soc. 240 (1978), 129–143. | MR