Keywords: semilinear parabolic equation; functional differential equation; integrodifferential equation; integral equation fractional evolution equation; global existence; stability; variation of parameters
@article{ARM_2000_36_1_a4,
author = {Kirane, M. and Tatar, N.-E.},
title = {Global existence and stability of some semilinear problems},
journal = {Archivum mathematicum},
pages = {33--44},
year = {2000},
volume = {36},
number = {1},
mrnumber = {1751612},
zbl = {1048.34102},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a4/}
}
Kirane, M.; Tatar, N.-E. Global existence and stability of some semilinear problems. Archivum mathematicum, Tome 36 (2000) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a4/
[1] G. Butler, T. Rogers: A generalization of a lemma of Bihari and applications to pointwise estimates for integral equations. J. Math. Anal. and Appl. 33 No 1 (1971), 77–81. | MR | Zbl
[2] G. DaPrato, M. Iannelli: Regularity of solutions of a class of linear integrodifferential equations in Banach spaces. J. Integral Equations Appl. 8 (1985), 27–40. | MR
[3] W. E. Fitzgibbon: Semilinear functional differential equations in Banach space. J. Diff. Eq. 29 (1978), 1–14. | MR | Zbl
[4] A. Friedman: Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969. | MR | Zbl
[5] Y. Fujita: Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27 (1990), 309–321. | MR | Zbl
[6] H. Hattori, J. H. Lightbourne: Global existence and blow up for a semilinear integral equation. J. Integral Equations Appl. V2, No4 (1990), 529–546. | MR
[7] D. Henry: Geometric theory of semilinear parabolic equations. Springer-Verlag, Berlin, Heidelberg, New York, 1981. | MR | Zbl
[8] H. Hoshino: On the convergence properties of global solutions for some reaction-diffusion systems under Neumann boundary conditions. Diff. and Int. Eq. V9 No4 (1996), 761–778. | MR | Zbl
[9] M. Kirane, N. Tatar: Asymptotic stability and blow up for a fractional evolution equation. submitted.
[10] M. Medved’: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. and Appl. 214 (1997), 349–366. | MR | Zbl
[11] M. Medved’: Singular integral inequalities and stability of semilinear parabolic equations. Archivum Mathematicum (Brno) Tomus 24 (1998), 183–190. | MR | Zbl
[12] M. W. Michalski: Derivatives of noninteger order and their applications. ”Dissertationes Mathematicae”, Polska Akademia Nauk, Instytut Matematyczny, Warszawa 1993. | MR | Zbl
[13] M. Miklavčič: Stability for semilinear equations with noninvertible linear operator. Pacific J. Math. 1, 118 (1985), 199–214. | MR
[14] S. M. Rankin: Existence and asymptotic behavior of a functional differential equation in a Banach space. J. Math. Anal. Appl. 88 (1982), 531–542. | MR
[15] R. Redlinger: On the asymptotic behavior of a semilinear functional differential equation in Banach space. J. Math. Anal. Appl. 112 (1985), 371–377. | MR | Zbl
[16] C. Travis, G. Webb: Existence and stability for partial functional differential equations. Trans. Amer. Math. Soc. 200 (1974), 395–418. | MR | Zbl
[17] C. Travis, G. Webb: Existence, stability and compacteness in the $\alpha $-norm for partial functional differential equations. Trans. Amer. Math. Soc. 240 (1978), 129–143. | MR