@article{ARM_2000_36_1_a3,
author = {Odani, Kenzi},
title = {On the limit cycle of the {Li\'enard} equation},
journal = {Archivum mathematicum},
pages = {25--31},
year = {2000},
volume = {36},
number = {1},
mrnumber = {1751611},
zbl = {1048.34067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a3/}
}
Odani, Kenzi. On the limit cycle of the Liénard equation. Archivum mathematicum, Tome 36 (2000) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a3/
[1] Alsholm P.: Existence of limit cycles for generalized Liénard equation. J. Math. Anal. Appl. 171 (1992), 242–255. | MR
[2] Cartwright M. L.: Van der Pol’s equation for relaxation oscillation. In: Contributions to the Theory of Non-linear Oscillations II, S. Lefschetz, ed., Ann. of Math. Studies, vol. 29, Princeton Univ. Press, 1952, pp. 3–18. | MR
[3] Giacomini H., Neukirch S.: On the number of limit cycles of Liénard equation. Physical Review E56 (1997), 3809-3813. | MR
[4] van Horssen W. T.: A perturbation method based on integrating factors. SIAM J. Appl. Math. 59 (1999), 1427-1443. | MR | Zbl
[5] Lefschetz S.: Differential Equations: Geometric Theory. 2nd Ed., Interscience, 1963; reprint, Dover, New York, 1977. | MR | Zbl
[6] Odani K.: The limit cycle of the van der Pol equation is not algebraic. J. Differential Equations 115 (1995), 146–152. | MR | Zbl
[7] Odani K.: Existence of exactly $N$ periodic solutions for Liénard systems. Funkcialaj Ekvacioj 39 (1996), 217–234. | MR | Zbl
[8] Odani K.: On the limit cycle of the van der Pol equation. In: Equadiff9 CD-ROM: Papers, Z. Došlá, J. Kuben, J. Vosmanský, eds., Masaryk Univ., Czech, 1998, pp. 229-235.
[9] Ye Y.-Q., al.: Theory of Limit Cycles. Transl. of Math. Monographs, vol. 66, Amer. Math. Soc., 1986. (Eng. Transl.) | MR | Zbl
[10] Zhang Z.-F., al.: Qualitative Theory of Differential Equations. Transl. of Math. Monographs, vol. 102, Amer. Math. Soc., 1992. (Eng. Transl.) | MR | Zbl