On the limit cycle of the Liénard equation
Archivum mathematicum, Tome 36 (2000) no. 1, pp. 25-31 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper, we give an existence theorem of periodic solution for Liénard equation $\dot{x}=y-F(x)$, $\dot{y}=-g(x)$. As a result, we estimate the amplitude $\rho (\mu )$ (maximal $x$-value) of the limit cycle of the van der Pol equation $\dot{x}=y-\mu (x^3/3-x)$, $\dot{y}=-x$ from above by $\rho (\mu )2.3439$ for every $\mu \ne 0$. The result is an improvement of the author’s previous estimation $\rho (\mu )2.5425$.
In the paper, we give an existence theorem of periodic solution for Liénard equation $\dot{x}=y-F(x)$, $\dot{y}=-g(x)$. As a result, we estimate the amplitude $\rho (\mu )$ (maximal $x$-value) of the limit cycle of the van der Pol equation $\dot{x}=y-\mu (x^3/3-x)$, $\dot{y}=-x$ from above by $\rho (\mu )2.3439$ for every $\mu \ne 0$. The result is an improvement of the author’s previous estimation $\rho (\mu )2.5425$.
Classification : 34C05
Keywords: van der Pol equation; limit cycle; amplitude
@article{ARM_2000_36_1_a3,
     author = {Odani, Kenzi},
     title = {On the limit cycle of the {Li\'enard} equation},
     journal = {Archivum mathematicum},
     pages = {25--31},
     year = {2000},
     volume = {36},
     number = {1},
     mrnumber = {1751611},
     zbl = {1048.34067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a3/}
}
TY  - JOUR
AU  - Odani, Kenzi
TI  - On the limit cycle of the Liénard equation
JO  - Archivum mathematicum
PY  - 2000
SP  - 25
EP  - 31
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a3/
LA  - en
ID  - ARM_2000_36_1_a3
ER  - 
%0 Journal Article
%A Odani, Kenzi
%T On the limit cycle of the Liénard equation
%J Archivum mathematicum
%D 2000
%P 25-31
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a3/
%G en
%F ARM_2000_36_1_a3
Odani, Kenzi. On the limit cycle of the Liénard equation. Archivum mathematicum, Tome 36 (2000) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a3/

[1] Alsholm P.: Existence of limit cycles for generalized Liénard equation. J. Math. Anal. Appl. 171 (1992), 242–255. | MR

[2] Cartwright M. L.: Van der Pol’s equation for relaxation oscillation. In: Contributions to the Theory of Non-linear Oscillations II, S. Lefschetz, ed., Ann. of Math. Studies, vol. 29, Princeton Univ. Press, 1952, pp. 3–18. | MR

[3] Giacomini H., Neukirch S.: On the number of limit cycles of Liénard equation. Physical Review E56 (1997), 3809-3813. | MR

[4] van Horssen W. T.: A perturbation method based on integrating factors. SIAM J. Appl. Math. 59 (1999), 1427-1443. | MR | Zbl

[5] Lefschetz S.: Differential Equations: Geometric Theory. 2nd Ed., Interscience, 1963; reprint, Dover, New York, 1977. | MR | Zbl

[6] Odani K.: The limit cycle of the van der Pol equation is not algebraic. J. Differential Equations 115 (1995), 146–152. | MR | Zbl

[7] Odani K.: Existence of exactly $N$ periodic solutions for Liénard systems. Funkcialaj Ekvacioj 39 (1996), 217–234. | MR | Zbl

[8] Odani K.: On the limit cycle of the van der Pol equation. In: Equadiff9 CD-ROM: Papers, Z. Došlá, J. Kuben, J. Vosmanský, eds., Masaryk Univ., Czech, 1998, pp. 229-235.

[9] Ye Y.-Q., al.: Theory of Limit Cycles. Transl. of Math. Monographs, vol. 66, Amer. Math. Soc., 1986. (Eng. Transl.) | MR | Zbl

[10] Zhang Z.-F., al.: Qualitative Theory of Differential Equations. Transl. of Math. Monographs, vol. 102, Amer. Math. Soc., 1992. (Eng. Transl.) | MR | Zbl