Asymptotic estimation for functional differential equations with several delays
Archivum mathematicum, Tome 35 (1999) no. 4, pp. 337-345 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We discuss the asymptotic behaviour of all solutions of the functional differential equation \[y^{\prime }(x)=\sum _{i=1}^ma_i(x)y(\tau _i(x))+b(x)y(x)\,,\] where $b(x)0$. The asymptotic bounds are given in terms of a solution of the functional nondifferential equation \[\sum _{i=1}^m|a_i(x)|\omega (\tau _i(x))+b(x)\omega (x)=0.\]
We discuss the asymptotic behaviour of all solutions of the functional differential equation \[y^{\prime }(x)=\sum _{i=1}^ma_i(x)y(\tau _i(x))+b(x)y(x)\,,\] where $b(x)0$. The asymptotic bounds are given in terms of a solution of the functional nondifferential equation \[\sum _{i=1}^m|a_i(x)|\omega (\tau _i(x))+b(x)\omega (x)=0.\]
Classification : 34K25, 39B99
Keywords: functional differential equation; functional nondifferential equation; asymptotic behaviour; transformation
@article{ARM_1999_35_4_a5,
     author = {\v{C}erm\'ak, Jan},
     title = {Asymptotic estimation for functional differential equations with several delays},
     journal = {Archivum mathematicum},
     pages = {337--345},
     year = {1999},
     volume = {35},
     number = {4},
     mrnumber = {1744521},
     zbl = {1048.34126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a5/}
}
TY  - JOUR
AU  - Čermák, Jan
TI  - Asymptotic estimation for functional differential equations with several delays
JO  - Archivum mathematicum
PY  - 1999
SP  - 337
EP  - 345
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a5/
LA  - en
ID  - ARM_1999_35_4_a5
ER  - 
%0 Journal Article
%A Čermák, Jan
%T Asymptotic estimation for functional differential equations with several delays
%J Archivum mathematicum
%D 1999
%P 337-345
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a5/
%G en
%F ARM_1999_35_4_a5
Čermák, Jan. Asymptotic estimation for functional differential equations with several delays. Archivum mathematicum, Tome 35 (1999) no. 4, pp. 337-345. http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a5/

[1] Čermák, J.: On the asymptotic behaviour of solutions of certain functional differential equations. Math. Slovaca 48 (1998), 187–212. | MR

[2] Čermák, J.: The asymptotic bounds of linear delay systems. J. Math. Anal. Appl. 225 (1998), 373–388. | MR

[3] Dibl¡k, J.: Asymptotic equilibrium for a class of delay differential equations. Proc. of the Second International Conference on Difference Equations, S. Elaydi, I. Győri, G. Ladas (eds.), 1995, pp. 137–143. | MR

[4] Hale, J. K., Verduyn Lunel, S. M.: Introduction to Functional Differential Equations, Springer-Verlag. New York, 1993. | MR

[5] Heard, M. L.: A change of variables for functional differential equations. J. Differential Equations 18 (1975), 1–10. | MR | Zbl

[6] Kato, T., Mcleod, J. B.: The functional differential equation $y^{\prime }(x)=ay(\lambda x)+by(x)$. Bull. Amer. Math. Soc. 77 (1971), 891–397. | MR

[7] Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations, Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1990. | MR

[8] Neuman, F.: Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czechoslovak Math. J. 32 (107) (1982), 488–494. | MR | Zbl

[9] Neuman, F.: Transformations and canonical forms of functional-differential equations. Proc. Roy. Soc. Edinburgh 115A (1990), 349–357. | MR

[10] Zdun, M.: On Simultaneous Abel equations. Aequationes Math. (1989), 163–177. | MR | Zbl