@article{ARM_1999_35_4_a3,
author = {\v{R}{\'\i}hov\'a-\v{S}kabrahov\'a, Dana},
title = {A note to {Friedrichs'} inequality},
journal = {Archivum mathematicum},
pages = {317--327},
year = {1999},
volume = {35},
number = {4},
mrnumber = {1744519},
zbl = {1051.65105},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a3/}
}
Říhová-Škabrahová, Dana. A note to Friedrichs' inequality. Archivum mathematicum, Tome 35 (1999) no. 4, pp. 317-327. http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a3/
[1] Čermák L.: A note on a discrete form of Friedrichs’ inequality. Aplikace matematiky 28 (1983), 457–466. | MR | Zbl
[2] Feistauer M., Ženíšek A.: Finite solution of nonlinear elliptic problems. Numerische Mathematik 50 (1987), 451–475. | MR
[3] Knobloch P.: Discrete Friedrichs’ and Korn’s inequalities in two and three dimensions. (preprint). | Zbl
[4] Kufner A., John O., Fučík S.: Function Spaces. Academia, Prague 1977. | MR
[5] Ljusternik L. A., Sobolew W. I.: Elemente der Funktionalanalysis. Akademie-Verlag, Berlin 1960. | Zbl
[6] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. | MR
[7] Škabrahová D.: Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition. (preprint). | Zbl
[8] Ženíšek A.: Discrete forms of Friedrichs’ inequalities in the finite element method. RAIRO Numerical Analysis 15 (1981), 265–286. | MR | Zbl
[9] Ženíšek A.: Finite element variational crimes in parabolic-elliptic problems. Numerische Mathematik 55 (1989), 343–376. | MR
[10] Ženíšek A.: Nonlinear elliptic and evolution problems and their finite element approximations. Academic Press, London 1990. | MR
[11] Zlámal M.: Finite element solution of quasistationary nonlinear magnetic field. RAIRO Numerical Analysis 16 (1982), 161–191. | MR
[12] Zlámal M.: Addendum to the paper “Finite element solution of quasistationary nonlinear magnetic field”. RAIRO Numerical Analysis 17 (1983), 407–415. | MR
[13] Zlámal M.: A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields. Mathematics of Computation 41 (1983), 425–440. | MR