A note to Friedrichs' inequality
Archivum mathematicum, Tome 35 (1999) no. 4, pp. 317-327
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35Q60, 35R45, 39A12, 65N30, 78A25, 78M10
@article{ARM_1999_35_4_a3,
     author = {\v{R}{\'\i}hov\'a-\v{S}kabrahov\'a, Dana},
     title = {A note to {Friedrichs'} inequality},
     journal = {Archivum mathematicum},
     pages = {317--327},
     year = {1999},
     volume = {35},
     number = {4},
     mrnumber = {1744519},
     zbl = {1051.65105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a3/}
}
TY  - JOUR
AU  - Říhová-Škabrahová, Dana
TI  - A note to Friedrichs' inequality
JO  - Archivum mathematicum
PY  - 1999
SP  - 317
EP  - 327
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a3/
LA  - en
ID  - ARM_1999_35_4_a3
ER  - 
%0 Journal Article
%A Říhová-Škabrahová, Dana
%T A note to Friedrichs' inequality
%J Archivum mathematicum
%D 1999
%P 317-327
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a3/
%G en
%F ARM_1999_35_4_a3
Říhová-Škabrahová, Dana. A note to Friedrichs' inequality. Archivum mathematicum, Tome 35 (1999) no. 4, pp. 317-327. http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a3/

[1] Čermák L.: A note on a discrete form of Friedrichs’ inequality. Aplikace matematiky 28 (1983), 457–466. | MR | Zbl

[2] Feistauer M., Ženíšek A.: Finite solution of nonlinear elliptic problems. Numerische Mathematik 50 (1987), 451–475. | MR

[3] Knobloch P.: Discrete Friedrichs’ and Korn’s inequalities in two and three dimensions. (preprint). | Zbl

[4] Kufner A., John O., Fučík S.: Function Spaces. Academia, Prague 1977. | MR

[5] Ljusternik L. A., Sobolew W. I.: Elemente der Funktionalanalysis. Akademie-Verlag, Berlin 1960. | Zbl

[6] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. | MR

[7] Škabrahová D.: Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition. (preprint). | Zbl

[8] Ženíšek A.: Discrete forms of Friedrichs’ inequalities in the finite element method. RAIRO Numerical Analysis 15 (1981), 265–286. | MR | Zbl

[9] Ženíšek A.: Finite element variational crimes in parabolic-elliptic problems. Numerische Mathematik 55 (1989), 343–376. | MR

[10] Ženíšek A.: Nonlinear elliptic and evolution problems and their finite element approximations. Academic Press, London 1990. | MR

[11] Zlámal M.: Finite element solution of quasistationary nonlinear magnetic field. RAIRO Numerical Analysis 16 (1982), 161–191. | MR

[12] Zlámal M.: Addendum to the paper “Finite element solution of quasistationary nonlinear magnetic field”. RAIRO Numerical Analysis 17 (1983), 407–415. | MR

[13] Zlámal M.: A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields. Mathematics of Computation 41 (1983), 425–440. | MR