Keywords: Wolstenholme-Leudesdorf theorem; p-integer number; Bernoulli number; Wilson quotient; irregular prime number
@article{ARM_1999_35_4_a1,
author = {Slavutskii, I. Sh.},
title = {Leudesdorf's theorem and {Bernoulli} numbers},
journal = {Archivum mathematicum},
pages = {299--303},
year = {1999},
volume = {35},
number = {4},
mrnumber = {1744517},
zbl = {1053.11003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a1/}
}
Slavutskii, I. Sh. Leudesdorf's theorem and Bernoulli numbers. Archivum mathematicum, Tome 35 (1999) no. 4, pp. 299-303. http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a1/
[1] Agoh, T., Dilcher, K., Skula, L.: Wilson quotients for composite moduli. Comp. Math. 67 (1998). No. 222, 843–861. | MR
[2] Bayat, M.: A generalization of Wolstenholme’s theorem. Amer. Math. Monthly 109 (1997), 557–560. | MR | Zbl
[3] Dilcher, K., Skula, L., Slavutskii, I. Sh.: Bernoulli numbers. Bibliography (1713–1990). Queen’s papers in Pure and Applied Mathematics, 1991, No. 87, 175 pp.; Appendix, Preprint (1994), 30 pp. | MR
[4] Hardy, G. H., Wright, E. M.: An introduction to theory of numbers. 5th ed., Oxford Sci. Publ., 1979. | MR
[5] Lehmer, E.: On congruences involving Bernoulli numbers and quotients of Fermat and Wilson. Ann. Math. 39 (2) (1938), 350–360. | MR
[6] Leudesdorf, C.: Some results in the elementary theory of numbers. Proc. London Math. Soc. 20 (1889), 199–212.
[7] Rama Rao, M.: An extention of Leudesdorf theorem. J. London Math. Soc. 12 (1937), 247–250.
[8] Slavutskii, I.: Staudt and arithmetic properties on Bernoulli numbers. Hist. Scient. 5 (1995), 70–74. | MR
[9] Slavutskii, I.: About von Staudt congruences for Bernoulli numbers. to appear. | MR | Zbl
[10] Washington, L. C.: Introduction to cyclotomic fields. 2nd ed., Springer-Verlag, New York, 1997. | MR | Zbl
[11] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Math. 5 (1862), 35–39.