Leudesdorf's theorem and Bernoulli numbers
Archivum mathematicum, Tome 35 (1999) no. 4, pp. 299-303 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For $m\in $, $(m,6)=1$, it is proved the relations between the sums \[ W(m,s)=\sum _{i=1, (i,m)=1}^{m-1} i^{-s}\,, \quad \quad s\in \,, \] and Bernoulli numbers. The result supplements the known theorems of C. Leudesdorf, N. Rama Rao and others. As the application it is obtained some connections between the sums $W(m,s)$ and Agoh’s functions, Wilson quotients, the indices irregularity of Bernoulli numbers.
For $m\in $, $(m,6)=1$, it is proved the relations between the sums \[ W(m,s)=\sum _{i=1, (i,m)=1}^{m-1} i^{-s}\,, \quad \quad s\in \,, \] and Bernoulli numbers. The result supplements the known theorems of C. Leudesdorf, N. Rama Rao and others. As the application it is obtained some connections between the sums $W(m,s)$ and Agoh’s functions, Wilson quotients, the indices irregularity of Bernoulli numbers.
Classification : 11A07, 11B68
Keywords: Wolstenholme-Leudesdorf theorem; p-integer number; Bernoulli number; Wilson quotient; irregular prime number
@article{ARM_1999_35_4_a1,
     author = {Slavutskii, I. Sh.},
     title = {Leudesdorf's theorem and {Bernoulli} numbers},
     journal = {Archivum mathematicum},
     pages = {299--303},
     year = {1999},
     volume = {35},
     number = {4},
     mrnumber = {1744517},
     zbl = {1053.11003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a1/}
}
TY  - JOUR
AU  - Slavutskii, I. Sh.
TI  - Leudesdorf's theorem and Bernoulli numbers
JO  - Archivum mathematicum
PY  - 1999
SP  - 299
EP  - 303
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a1/
LA  - en
ID  - ARM_1999_35_4_a1
ER  - 
%0 Journal Article
%A Slavutskii, I. Sh.
%T Leudesdorf's theorem and Bernoulli numbers
%J Archivum mathematicum
%D 1999
%P 299-303
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a1/
%G en
%F ARM_1999_35_4_a1
Slavutskii, I. Sh. Leudesdorf's theorem and Bernoulli numbers. Archivum mathematicum, Tome 35 (1999) no. 4, pp. 299-303. http://geodesic.mathdoc.fr/item/ARM_1999_35_4_a1/

[1] Agoh, T., Dilcher, K., Skula, L.: Wilson quotients for composite moduli. Comp. Math. 67 (1998). No. 222, 843–861. | MR

[2] Bayat, M.: A generalization of Wolstenholme’s theorem. Amer. Math. Monthly 109 (1997), 557–560. | MR | Zbl

[3] Dilcher, K., Skula, L., Slavutskii, I. Sh.: Bernoulli numbers. Bibliography (1713–1990). Queen’s papers in Pure and Applied Mathematics, 1991, No. 87, 175 pp.; Appendix, Preprint (1994), 30 pp. | MR

[4] Hardy, G. H., Wright, E. M.: An introduction to theory of numbers. 5th ed., Oxford Sci. Publ., 1979. | MR

[5] Lehmer, E.: On congruences involving Bernoulli numbers and quotients of Fermat and Wilson. Ann. Math. 39 (2) (1938), 350–360. | MR

[6] Leudesdorf, C.: Some results in the elementary theory of numbers. Proc. London Math. Soc. 20 (1889), 199–212.

[7] Rama Rao, M.: An extention of Leudesdorf theorem. J. London Math. Soc. 12 (1937), 247–250.

[8] Slavutskii, I.: Staudt and arithmetic properties on Bernoulli numbers. Hist. Scient. 5 (1995), 70–74. | MR

[9] Slavutskii, I.: About von Staudt congruences for Bernoulli numbers. to appear. | MR | Zbl

[10] Washington, L. C.: Introduction to cyclotomic fields. 2nd ed., Springer-Verlag, New York, 1997. | MR | Zbl

[11] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Math. 5 (1862), 35–39.