On asymptotic decaying solutions for a class of second order differential equations
Archivum mathematicum, Tome 35 (1999) no. 3, pp. 275-284
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The author considers the quasilinear differential equations \begin{gather} \left(r(t)\varphi (x^{\prime })\right)^{\prime }+ q(t)f(x)=0\,,\quad \quad t\ge a\\ \multicolumn{2}{l}{\text{and}}\\ \left(r(t)\varphi (x^{\prime })\right)^{\prime } + F(t,x)=\pm g(t)\,,\quad \quad t\ge a\,. \end{gather} By means of topological tools there are established conditions ensuring the existence of nonnegative asymptotic decaying solutions of these equations.
The author considers the quasilinear differential equations \begin{gather} \left(r(t)\varphi (x^{\prime })\right)^{\prime }+ q(t)f(x)=0\,,\quad \quad t\ge a\\ \multicolumn{2}{l}{\text{and}}\\ \left(r(t)\varphi (x^{\prime })\right)^{\prime } + F(t,x)=\pm g(t)\,,\quad \quad t\ge a\,. \end{gather} By means of topological tools there are established conditions ensuring the existence of nonnegative asymptotic decaying solutions of these equations.
Classification :
34C11, 34D05
Keywords: nonoscillatory behavior; asymptotic decaying nonnegative solutions; fixed point theorem
Keywords: nonoscillatory behavior; asymptotic decaying nonnegative solutions; fixed point theorem
@article{ARM_1999_35_3_a6,
author = {Matucci, Serena},
title = {On asymptotic decaying solutions for a class of second order differential equations},
journal = {Archivum mathematicum},
pages = {275--284},
year = {1999},
volume = {35},
number = {3},
mrnumber = {1725843},
zbl = {1048.34088},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a6/}
}
Matucci, Serena. On asymptotic decaying solutions for a class of second order differential equations. Archivum mathematicum, Tome 35 (1999) no. 3, pp. 275-284. http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a6/