Existence of solutions for nonlinear parabolic problems
Archivum mathematicum, Tome 35 (1999) no. 3, pp. 255-274 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider nonlinear parabolic boundary value problems. First we assume that the right hand side term is discontinuous and nonmonotone and in order to have an existence theory we pass to a multivalued version by filling in the gaps at the discontinuity points. Assuming the existence of an upper solution $\phi $ and of a lower solution $\psi $ such that $\psi \le \phi $, and using the theory of nonlinear operators of monotone type, we show that there exists a solution $x \in [\psi ,\phi ]$ and that the set of all such solutions is compact in $W_{pq}(T)$. For the problem with a Caratheodory right hand side we show the existence of extremal solutions in $[\psi ,\phi ]$.
We consider nonlinear parabolic boundary value problems. First we assume that the right hand side term is discontinuous and nonmonotone and in order to have an existence theory we pass to a multivalued version by filling in the gaps at the discontinuity points. Assuming the existence of an upper solution $\phi $ and of a lower solution $\psi $ such that $\psi \le \phi $, and using the theory of nonlinear operators of monotone type, we show that there exists a solution $x \in [\psi ,\phi ]$ and that the set of all such solutions is compact in $W_{pq}(T)$. For the problem with a Caratheodory right hand side we show the existence of extremal solutions in $[\psi ,\phi ]$.
Classification : 35K55, 35K60
Keywords: upper and lower solutions; weak solution; evolution triple; compact embedding; distributional derivative; operator of type $(S)_{+}$; operator of type $L-(S)_{+}$; $L$-pseudomonotone operator; multivalued problem; extremal solutions; Zorn’s lemma
@article{ARM_1999_35_3_a5,
     author = {Halidias, Nikolaos and Papageorgiou, Nikolaos S.},
     title = {Existence of solutions for nonlinear parabolic problems},
     journal = {Archivum mathematicum},
     pages = {255--274},
     year = {1999},
     volume = {35},
     number = {3},
     mrnumber = {1725842},
     zbl = {1046.35054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a5/}
}
TY  - JOUR
AU  - Halidias, Nikolaos
AU  - Papageorgiou, Nikolaos S.
TI  - Existence of solutions for nonlinear parabolic problems
JO  - Archivum mathematicum
PY  - 1999
SP  - 255
EP  - 274
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a5/
LA  - en
ID  - ARM_1999_35_3_a5
ER  - 
%0 Journal Article
%A Halidias, Nikolaos
%A Papageorgiou, Nikolaos S.
%T Existence of solutions for nonlinear parabolic problems
%J Archivum mathematicum
%D 1999
%P 255-274
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a5/
%G en
%F ARM_1999_35_3_a5
Halidias, Nikolaos; Papageorgiou, Nikolaos S. Existence of solutions for nonlinear parabolic problems. Archivum mathematicum, Tome 35 (1999) no. 3, pp. 255-274. http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a5/

[1] Aizicovici S., Papageorgiou N. S.: Infinite dimensional parametric optimal control problems. Math. Nachr. 162 (1993), 17–38. | MR | Zbl

[2] Boccardo L., Murat F., Puel J.-P.: Existence results for some quasilinear parabolic problems. Nonlin. Anal-TMA 13 (1989), 373–392. | MR

[3] Carl S.: On the existence of extremal weak solutions for a class of quasilinear parabolic problems. Diff. Integ. Eqns 6 (1993), 1493–1505. | MR | Zbl

[4] Carl S.: Enclosure of solution for quasilinear dynamic hemivariational inequalities. Nonlin. World 3 (1996), 281–298. | MR

[5] Chang K.-C.: Variational methods for nondifferentiable functions and their applications to partial differential equations. J. Math. Anal. 80 (1981), 102–129. | MR

[6] Chipot M., Rodrigues, J-E.: Comparison and stability of solutions to a class of quasilinear parabolic problems. Proc. Royal Soc. Edinburgh 110 A (1988), 275–285. | MR | Zbl

[7] Costa D. G., Goncalves J. V. A.: Critical point theory for nondifferentiable functionals and applications. J. Math. Anal. 153 ( 1990), 470–485. | MR | Zbl

[8] Dancer E. N., Sweers G.: On the existence of maximal weak solution for a semilinear elliptic equation. Diff. Integr. Eqns 2 (1989), 533–540. | MR

[9] Deuel J., Hess P.: Nonlinear parabolic boundary value problems with upper and lower solutions. Israel J. Math. 29 (1978), 92–104. | MR | Zbl

[10] Dunford N., Schwartz J.: Linear Operators I. Wiley, New York (1958).

[11] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, The Netherlands (1997). | MR | Zbl

[12] Evans L., Gariepy R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | MR | Zbl

[13] Halidias N., Papageorgiou N. S.: Second order multivalued boundary value problems. Archivum Math. (Brno) 34 (1998), 267–284. | MR | Zbl

[14] Kandilakis D., Papageorgiou N. S.: Nonlinear periodic parabolic problems with nonmonotone discontinuities. Proc. Edinburgh Math. Soc. 41 (1998), 117–132. | MR | Zbl

[15] Kesavan S.: Topics in Functional Analysis and Applications. Wiley, New York (1989). | MR | Zbl

[16] Lions J.-L.: Quelques Methodes de Resolution des Problems aux Limits Non-Lineaires. Dunod, Paris (1969). | MR

[17] Miettinen M.: Approximation of hemivariational inequalities and optimal control problem. Univ. of Jyvaskyla, Math. Department, Finland, Report 59 (1993). | MR

[18] Miettinen M.: A parabolic hemivariational inequality. Nonl. Anal-TMA 26 (1996), 725–734. | MR | Zbl

[19] Mokrane A.: Existence of bounded solutions for some nonlinear parabolic equations. Proc. Royal Soc. Edinburgh 107 (1987), 313–326. | MR

[20] Panagiotopoulos P. D.: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer Verlag, New York, Berlin (1994). | MR

[21] Rauch J.: Discontinuous semilinear differential equations and multiple-valued maps. Proc. AMS 64 (1977), 272–282. | MR | Zbl

[22] Stuart C.: Maximal and minimal solutions of elliptic equations with discontinuous nonlinearities. Math. Zeitschrift 163 (1978), 239–249. | MR

[23] Zeidler E.: Nonlinear Functional Analysis and its Applications. Springer Verlag, New York (1990). | Zbl