Generalized quasivariational inequalities on Fréchet spaces
Archivum mathematicum, Tome 35 (1999) no. 3, pp. 245-254 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper generalized quasivariational inequalities on Fréchet spaces are deduced from new fixed point theory of Agarwal and O’Regan [1] and O’Regan [7].
In this paper generalized quasivariational inequalities on Fréchet spaces are deduced from new fixed point theory of Agarwal and O’Regan [1] and O’Regan [7].
Classification : 47H10, 47J20, 49J40, 54C60
Keywords: variational inequalities; fixed points
@article{ARM_1999_35_3_a4,
     author = {O'Regan, Donal},
     title = {Generalized quasivariational inequalities on {Fr\'echet} spaces},
     journal = {Archivum mathematicum},
     pages = {245--254},
     year = {1999},
     volume = {35},
     number = {3},
     mrnumber = {1725841},
     zbl = {1048.47509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a4/}
}
TY  - JOUR
AU  - O'Regan, Donal
TI  - Generalized quasivariational inequalities on Fréchet spaces
JO  - Archivum mathematicum
PY  - 1999
SP  - 245
EP  - 254
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a4/
LA  - en
ID  - ARM_1999_35_3_a4
ER  - 
%0 Journal Article
%A O'Regan, Donal
%T Generalized quasivariational inequalities on Fréchet spaces
%J Archivum mathematicum
%D 1999
%P 245-254
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a4/
%G en
%F ARM_1999_35_3_a4
O'Regan, Donal. Generalized quasivariational inequalities on Fréchet spaces. Archivum mathematicum, Tome 35 (1999) no. 3, pp. 245-254. http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a4/

[1] Agarwal R. P., O’Regan D.: Fixed points in Fréchet spaces and variational inequalities. Nonlinear Analysis, to appear.

[2] Aliprantis C. D., Border K. C.: Infinite dimensional analysis. Springer Verlag, Berlin, 1994. | MR | Zbl

[3] Dien N. H.: Some remarks on variational like and quasivariational like inequalities. Bull. Austral. Math. Soc. 46 (1992), 335–342. | MR | Zbl

[4] Furi M., Pera P.: A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals. Ann. Polon. Math. 47 (1987), 331–346. | MR | Zbl

[5] O’Regan D.: Generalized multivalued quasivariational inequalities. Advances Nonlinear Variational Inequalities, 1 (1998), 1–9. | MR

[6] O’Regan D.: Fixed point theory for closed multifunctions. Archivum Mathematicum (Brno) 34 (1998), 191–197. | MR | Zbl

[7] O’Regan D.: A multiplicity fixed point theorem in Fréchet spaces. to appear. | Zbl

[8] Park S.: Fixed points of approximable maps. Proc. Amer. Math. Soc. 124 (1996), 3109–3114. | MR | Zbl

[9] Park S., Chen M. P.: Generalized quasivariational inequalities. Far East J. Math. Sci. 3 (1995), 199–204. | MR | Zbl

[10] Su C. H., Sehgal V. M.: Some fixed point theorems for condensing multifunctions in locally convex spaces. Proc. Amer. Math. Soc. 50 (1975), 150–154. | MR | Zbl

[11] Tan K. K.: Comparison theorems on minimax inequalities, variational inequalities and fixed point theorems. Jour. London Maths. Soc. 28 (1983), 555–562. | MR | Zbl

[12] Yuan X. Z.: The study of minimax inequalities and applications to economics and variational inequalities. Memoirs of Amer. Maths. Soc. Vol. 625, 1998.