On the structure of the solution set of a functional-differential system on an unbounded interval
Archivum mathematicum, Tome 35 (1999) no. 3, pp. 215-228
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It is proved that under some conditions the set of all solutions of an initial value problem for $n$-th order functional differential system on an unbounded interval is a compact $R_\delta $.
It is proved that under some conditions the set of all solutions of an initial value problem for $n$-th order functional differential system on an unbounded interval is a compact $R_\delta $.
Classification :
34K05, 34K12, 47H10, 47N20
Keywords: initial value problem; functional differential system; $R_\delta$-set
Keywords: initial value problem; functional differential system; $R_\delta$-set
@article{ARM_1999_35_3_a2,
author = {Kub\'a\v{c}ek, Zbyn\v{e}k},
title = {On the structure of the solution set of a functional-differential system on an unbounded interval},
journal = {Archivum mathematicum},
pages = {215--228},
year = {1999},
volume = {35},
number = {3},
mrnumber = {1725839},
zbl = {1054.34103},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a2/}
}
Kubáček, Zbyněk. On the structure of the solution set of a functional-differential system on an unbounded interval. Archivum mathematicum, Tome 35 (1999) no. 3, pp. 215-228. http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a2/