Some results regarding an equation of Hamilton-Jacobi type
Archivum mathematicum, Tome 35 (1999) no. 3, pp. 203-214 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main goal is to show that the pointwise Osserman four-dimensional pseudo-Riemannian manifolds (Lorentzian and manifolds of neutral signature $(--++)$) can be characterized as self dual (or anti-self dual) Einstein manifolds. Also, examples of pointwise Osserman manifolds which are not Osserman are discussed.
The main goal is to show that the pointwise Osserman four-dimensional pseudo-Riemannian manifolds (Lorentzian and manifolds of neutral signature $(--++)$) can be characterized as self dual (or anti-self dual) Einstein manifolds. Also, examples of pointwise Osserman manifolds which are not Osserman are discussed.
Classification : 35B10, 35B27, 35F20, 35R35, 80A25
Keywords: self-dual manifolds; manifolds of neutral signature; Jacobi operator; Einstein manifolds
@article{ARM_1999_35_3_a1,
     author = {Schmidt-Laine, C. and Edarh-Bossou, T. K.},
     title = {Some results regarding an equation of {Hamilton-Jacobi} type},
     journal = {Archivum mathematicum},
     pages = {203--214},
     year = {1999},
     volume = {35},
     number = {3},
     mrnumber = {1725838},
     zbl = {1046.35008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a1/}
}
TY  - JOUR
AU  - Schmidt-Laine, C.
AU  - Edarh-Bossou, T. K.
TI  - Some results regarding an equation of Hamilton-Jacobi type
JO  - Archivum mathematicum
PY  - 1999
SP  - 203
EP  - 214
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a1/
LA  - en
ID  - ARM_1999_35_3_a1
ER  - 
%0 Journal Article
%A Schmidt-Laine, C.
%A Edarh-Bossou, T. K.
%T Some results regarding an equation of Hamilton-Jacobi type
%J Archivum mathematicum
%D 1999
%P 203-214
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a1/
%G en
%F ARM_1999_35_3_a1
Schmidt-Laine, C.; Edarh-Bossou, T. K. Some results regarding an equation of Hamilton-Jacobi type. Archivum mathematicum, Tome 35 (1999) no. 3, pp. 203-214. http://geodesic.mathdoc.fr/item/ARM_1999_35_3_a1/

[Bar92] Barles G.: Solutions de viscosité des équations d’Hamilton-Jacobi du premier ordre et applications. Faculté des Sciences et Techniques; Parc de Grandmont Tours-France.

[BENS90] Brauner C.M., Edarh-Bossou T.K., Namah G., Schmidt-Lainé C.: Pré-étude sur l’homogénéisation de l’effet “Hump”. Rapport, Univ Bordeaux I, Ens-Lyon, Juin 1990.

[CEL84] Crandall M.G., Evans L.C., Lions P.L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. AMS 282(1984), No 2. | MR | Zbl

[CIL92] Crandall M.G., Ishii H., Lions P.L.: User’s guide to viscosity solutions of second order partial differential equation. AMS 27(1992), No 1, 1-63. | MR

[CL83] Crandall M.G., Lions P.L.: Viscosity solutions of Hamilton-Jacobi equations. AMS 277(1983), No 1. | MR | Zbl

[Eda89] Edarh-Bossou T.K.: Modélisation numérique de la combustion d’un bloc de propergol solide - effet hump. DEA, Univ Claude-Bernard Lyon I-ENS Lyon, 1989.

[Eda93] Edarh-Bossou T.K.: Etude de la propagation d’un front de f$ $lamme dans un milieu strié. thèse de Doctorat, Univ. Claude-Bernard Lyon I-ENS Lyon, 1993.

[Lio82] Lions P.D.: Generalized solutions of Hamilton-Jacobi equations. Pitman, London 1982. | Zbl

[LPV87] Lions P.D., Papanicolau G., Varadan S.R.S.: Homogenization of Hamilton-Jacobi equation. Preprint, Univ. Paris Dauphine, 1987.

[Nam90] Namah G.: Etude de deux modèles de combustion en phase gazeuse et en milieu strié. thèse de Doctorat, Univ. Bordeaux I, 1990.

[Rib88] Ribereau D.: Génération d’un logiciel de simulation de la combustion d’un bloc de propergol solide. thèse de Doctorat, Univ. Bordeaux I, 1988.