Nonnegativity of functionals corresponding to the second order half-linear differential equation
Archivum mathematicum, Tome 35 (1999) no. 2, pp. 155-164 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study extremal properties of functional associated with the half–linear second order differential equation E$_p$. Necessary and sufficient condition for nonnegativity of this functional is given in two special cases: the first case is when both points are regular and the second is the case, when one end point is singular. The obtained results extend the theory of quadratic functionals.
In this paper we study extremal properties of functional associated with the half–linear second order differential equation E$_p$. Necessary and sufficient condition for nonnegativity of this functional is given in two special cases: the first case is when both points are regular and the second is the case, when one end point is singular. The obtained results extend the theory of quadratic functionals.
Classification : 34C10, 49K15
Keywords: half–linear differential equation; associated functional; Picone identity; conjugate points
@article{ARM_1999_35_2_a7,
     author = {Ma\v{r}{\'\i}k, Robert},
     title = {Nonnegativity of functionals corresponding to the second order half-linear differential equation},
     journal = {Archivum mathematicum},
     pages = {155--164},
     year = {1999},
     volume = {35},
     number = {2},
     mrnumber = {1711728},
     zbl = {1055.49012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_2_a7/}
}
TY  - JOUR
AU  - Mařík, Robert
TI  - Nonnegativity of functionals corresponding to the second order half-linear differential equation
JO  - Archivum mathematicum
PY  - 1999
SP  - 155
EP  - 164
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1999_35_2_a7/
LA  - en
ID  - ARM_1999_35_2_a7
ER  - 
%0 Journal Article
%A Mařík, Robert
%T Nonnegativity of functionals corresponding to the second order half-linear differential equation
%J Archivum mathematicum
%D 1999
%P 155-164
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1999_35_2_a7/
%G en
%F ARM_1999_35_2_a7
Mařík, Robert. Nonnegativity of functionals corresponding to the second order half-linear differential equation. Archivum mathematicum, Tome 35 (1999) no. 2, pp. 155-164. http://geodesic.mathdoc.fr/item/ARM_1999_35_2_a7/

[1] Bihari, I.: On the second order half-linear differential equation. Studia Sci. Math. Hungar, 3 (1968), 411–437. | MR | Zbl

[2] Došlá, Z., Došlý, O.: On transformations of singular quadratic functionals corresponding to equation $(py^{\prime })^{\prime }+qy=0$. Arch. Math. (Brno) 24 (1988), 75–82. | MR

[3] Došlá, Z., Došlý, O.: Quadratic funtionals with general boundary conditions. Appl. Math. Opt. 36 (1997), 243–262. | MR

[4] Elbert, Á.: A half-linear second order differential equation. Coll. Math. Soc. János Bolyai 30. Qual. theory of diff. eq. Szeged (Hungary) (1979), 153–179.

[5] Ioffe, A. D., Tihomirov, V. M.: Theory of extremal problems. North-Holland Publ., 1979, pp. 122–124. | MR

[6] Jaroš, J., Kusano, T.: A Picone type identity for second order half-linear differential equations. (to appear). | MR

[7] Kaňovský, J.: Global transformations of linear differential equations and quadratic functionals I,II. Arch. Math. 19 (1983), 161–171. | MR

[8] Leighton, W., Morse, M.: Singular quadratic functionals. Trans. Amer. Math. Soc. 40 (1936), 252–286. | MR

[9] Li, H. J., Yeh, Ch. Ch.: Sturmian comparison theorem for half-linear second order diff. equations. Proc. Roy. Soc. of Edinburg 125 A (1995), 1193–1204. | MR

[10] Reid, W. T.: Ordinary differential equations. John Wiley and Sons, New York, 1971. | MR | Zbl