Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix
Archivum mathematicum, Tome 35 (1999) no. 2, pp. 129-140 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Riemannian manifolds for which a natural skew-symmetric curvature operator has constant eigenvalues on helices are studied. A local classification in dimension three is given. In the three dimensional case one gets all locally symmetric spaces and all Riemannian manifolds with the constant principal Ricci curvatures $r_1 = r_2 = 0, r_3 \ne 0$, which are not locally homogeneous, in general.
Riemannian manifolds for which a natural skew-symmetric curvature operator has constant eigenvalues on helices are studied. A local classification in dimension three is given. In the three dimensional case one gets all locally symmetric spaces and all Riemannian manifolds with the constant principal Ricci curvatures $r_1 = r_2 = 0, r_3 \ne 0$, which are not locally homogeneous, in general.
Classification : 53C15, 53C20, 53C21, 53C22
Keywords: helix; constant eigenvalues of the curvature operator; locally symmetric spaces; curvature homogeneous spaces
@article{ARM_1999_35_2_a3,
     author = {Alexieva, Yana and Ivanov, Stefan},
     title = {Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix},
     journal = {Archivum mathematicum},
     pages = {129--140},
     year = {1999},
     volume = {35},
     number = {2},
     mrnumber = {1711665},
     zbl = {1054.53058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_2_a3/}
}
TY  - JOUR
AU  - Alexieva, Yana
AU  - Ivanov, Stefan
TI  - Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix
JO  - Archivum mathematicum
PY  - 1999
SP  - 129
EP  - 140
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1999_35_2_a3/
LA  - en
ID  - ARM_1999_35_2_a3
ER  - 
%0 Journal Article
%A Alexieva, Yana
%A Ivanov, Stefan
%T Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix
%J Archivum mathematicum
%D 1999
%P 129-140
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1999_35_2_a3/
%G en
%F ARM_1999_35_2_a3
Alexieva, Yana; Ivanov, Stefan. Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix. Archivum mathematicum, Tome 35 (1999) no. 2, pp. 129-140. http://geodesic.mathdoc.fr/item/ARM_1999_35_2_a3/

[1] Berndt J., Vanhecke L.: Two natural generalizations of locally symmetric spaces. Diff.Geom. and Appl. 2 (1992), 57–80. | MR | Zbl

[2] Berndt J., Prüfer F., Vanhecke L.: Symmetric-like Riemannian manifolds and geodesic symmetries. Proc. Royal Soc. Edinburg A 125 (1995), 265–282. | MR | Zbl

[3] Berndt J., Vanhecke L.: Geodesic sprays and $\mathcal C$-and $\mathcal B$-spaces. Rend. Sem. Politec. Torino 50(1992), no.4, 343–358. | MR

[4] Berndt J., Vanhecke L.: Geodesic spheres and generalizations of symmetric spaces. Boll. Un. Mat. Ital. A(7), 7 (1993), no. 1, 125–134. | MR | Zbl

[5] Chi Q. S.: A curvature characterization of certain locally rank-one symmetric spaces. J. Diff. Geom. 28 (1988), 187–202. | MR | Zbl

[6] Gilkey P.: Manifolds whose curvature operator has constant eigenvalues at the basepoint. J. Geom. Anal. 4 2 (1992), 157–160. | MR

[7] Gilkey P.: Manifolds whose higher odd order curvature operators have constant eigenvalues at the basepoint. J. Geom. Anal. 2, 2 (1992), 151–156. | MR | Zbl

[8] Gilkey P., Swann A., Vanhecke L.: Isoparametric geodesic spheres and a Conjecture of Osserman concerning the Jacobi operator. Quart. J. Math. Oxford (2), 46 (1995), 299–320. | MR | Zbl

[9] Gilkey P., Leahy J., Sadofsky H.: Riemannian manifolds whose skew-symmetric curvature operator has constant eigenvalues. preprint. | MR | Zbl

[10] Ivanov S., Petrova I.: Riemannian manifold in which certain curvature operator has constant eigenvalues along each circle. Ann. Glob. Anal. Geom. 15 (1997), 157–171. | MR

[11] Ivanov S., Petrova I.: Curvature operator with parallel Jordanian basis on circles. Riv. Mat. Univ. Parma, 5 (1996), 23–31. | MR | Zbl

[12] Ivanov S., Petrova I.: Riemannian manifold in which the skew-symmetric curvature operator has pointwise constant eigenvalues. Geometrie Dedicata, 70 (1998), 269–282. | MR | Zbl

[13] Ivanov S., Petrova I.: Locally conformal flat Riemannian manifolds with constant principal Ricci curvatures and locally conformal flat ${\mathcal C}$-spaces. E-print dg-ga/9702009.

[14] Ivanov S., Petrova I.: Conformally flat Einstein-like manifolds and conformally flat Riemannian 4-manifolds all of whose Jacobi operators have parallel eigenspaces along every geodesic. E-print dg-ga/9702019.

[15] Kowalski O.: A classification of Riemannian manifolds with constant principal Ricci curvatures $r_1 = r_2 \ne r_3$. Nagoya Math. J. 132 (1993), 1–36. | MR

[16] Kowalski O.: private communication | Zbl

[17] Kowalski O., Prüfer F.: On Riemannian 3-manifolds with distinct constant Ricci eigenvalues. Math. Ann. 300 (1994), 17–28. | MR

[18] Milnor J.: Curvature of left-invariant metrics on Lie groups. Adv. in Math. 21 (1976), 163–170. | MR

[19] Osserman R.: Curvature in the 80’s. Amer. Math. Monthly, (1990), 731–756. | MR

[20] Shabó Z.: Structure theorems on Riemannian spaces satisfying $R(X,Y)\circ R = 0$, I. The local version. J. Diff. Geom. 17 (1982), 531–582. | MR

[21] Spiro A., Tricerri F.: 3-dimensional Riemannian metrics with prescribed Ricci principal curvatures. J. Math. Pures Appl. 74 (1995), 253–271. | MR | Zbl