Subalgebras of finite codimension in symplectic Lie algebra
Archivum mathematicum, Tome 35 (1999) no. 2, pp. 103-114
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Subalgebras of germs of vector fields leaving $0$ fixed in $R^{2n}$, of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at $0$. We give an application.
Subalgebras of germs of vector fields leaving $0$ fixed in $R^{2n}$, of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at $0$. We give an application.
Classification :
17B66
Keywords: Hamiltonian vector fields; Poisson bracket; pseudogroup action
Keywords: Hamiltonian vector fields; Poisson bracket; pseudogroup action
@article{ARM_1999_35_2_a1,
author = {Benalili, Mohammed and Boucherif, Abdelkader},
title = {Subalgebras of finite codimension in symplectic {Lie} algebra},
journal = {Archivum mathematicum},
pages = {103--114},
year = {1999},
volume = {35},
number = {2},
mrnumber = {1711673},
zbl = {1064.17508},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_2_a1/}
}
Benalili, Mohammed; Boucherif, Abdelkader. Subalgebras of finite codimension in symplectic Lie algebra. Archivum mathematicum, Tome 35 (1999) no. 2, pp. 103-114. http://geodesic.mathdoc.fr/item/ARM_1999_35_2_a1/