On the asymptotically periodic solution of some linear difference equations
Archivum mathematicum, Tome 35 (1999) no. 1, pp. 13-19
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For the linear difference equation \[ x_{n+1} -a_n x_n = \sum _{i=0}^r a_n^{(i)}x_{n+i}, \;\;\; n \in N \] sufficient conditions for the existence of an asymptotically periodic solutions are given.
For the linear difference equation \[ x_{n+1} -a_n x_n = \sum _{i=0}^r a_n^{(i)}x_{n+i}, \;\;\; n \in N \] sufficient conditions for the existence of an asymptotically periodic solutions are given.
@article{ARM_1999_35_1_a1,
author = {Popenda, Jerzy and Schmeidel, Ewa},
title = {On the asymptotically periodic solution of some linear difference equations},
journal = {Archivum mathematicum},
pages = {13--19},
year = {1999},
volume = {35},
number = {1},
mrnumber = {1684519},
zbl = {1051.39010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1999_35_1_a1/}
}
Popenda, Jerzy; Schmeidel, Ewa. On the asymptotically periodic solution of some linear difference equations. Archivum mathematicum, Tome 35 (1999) no. 1, pp. 13-19. http://geodesic.mathdoc.fr/item/ARM_1999_35_1_a1/
[1] Agarwal R. P., Popenda J.: Periodic Solutions of First Order Linear Difference Equations. Math. Comput. Modelling 22, 1, 1995, 11-19. | MR | Zbl
[2] Musielak R., Popenda J.: The Periodic Solutions of the Second Order Nonlinear Difference Equation. Publ. Mat. 32, 1988, 49-56. | MR | Zbl
[3] Popenda J., Schmeidel E.: On the Asymptotic Behavior of Solutions of Linear Difference Equations. Publ. Mat. 38, 1994, 3-9. | MR | Zbl
[4] Popenda J., Schmeidel E.: On the Asymptotic Behaviour of Solution of Some Difference Equations of Infinite Order. (submitted).