Keywords: fibred manifold; jet space; infinite order jet space; variational bicomplex; variational sequence 483504
@article{ARM_1998_34_4_a7,
author = {Vitolo, Raffaele},
title = {A new infinite order formulation of variational sequences},
journal = {Archivum mathematicum},
pages = {483--504},
year = {1998},
volume = {34},
number = {4},
mrnumber = {1679643},
zbl = {0970.58002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a7/}
}
Vitolo, Raffaele. A new infinite order formulation of variational sequences. Archivum mathematicum, Tome 34 (1998) no. 4, pp. 483-504. http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a7/
[1] Anderson I. M., Duchamp T.: On the existence of global variational principles. Amer. Math. J. 102 (1980), 781-868. | MR | Zbl
[2] Bauderon M.: Le problème inverse du calcul des variations. Ann. de l’I.H.P. 36, n. 2 (1982), 159-179. | MR | Zbl
[3] Bott R., Tu L. W.: Differential Forms in Algebraic Topology. GTM 82 Springer–Verlag, Berlin, 1982. | MR | Zbl
[4] Dedecker P., Tulczyjew W. M.: Spectral sequences and the inverse problem of the calculus of variations. In Internat. Coll. on Diff. Geom. Methods in Math. Phys., Aix–en–Provence, 1979; Lecture Notes in Mathematics 836 Springer–Verlag, Berlin, 1980, 498-503. | MR
[5] Ferraris M., Francaviglia M.: Global Formalism in Higher Order Calculus of Variations. Diff. Geom. and its Appl., Part II, Proc. of the Conf. University J. E. Purkyně, Brno, 1984, 93-117. | MR
[6] Greub W.: Multilinear Algebra. Springer–Verlag, 1978. | MR | Zbl
[7] Kolář I.: A geometrical version of the higher order Hamilton formalism in fibred manifolds. Jour. Geom. Phys. 1, n. 2 (1984), 127-137. | MR
[8] Kolář I., Vitolo R.: On the Helmholtz operator for Euler morphisms. preprint 1997. | MR
[9] Krupka D.: Variational sequences on finite order jet spaces. Diff. Geom. and its Appl., Proc. of the Conf. World Scientific, New York, 1990, 236-254. | MR | Zbl
[10] Krupka D.: Topics in the calculus of variations: finite order variational sequences. Diff. Geom. and its Appl., Proc. of the Conf., Opava (Czech Republic), (1993) 473-495. | MR | Zbl
[11] Kuperschmidt B. A.: Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism. Lecture Notes in Math. 775: Geometric Methods in Mathematical Physics, Springer, Berlin, (1980), 162-218. | MR
[12] Mangiarotti L., Modugno M.: Fibered Spaces, Jet Spaces and Connections for Field Theories. Int. Meet. on Geometry and Physics, Proc. of the Conf. Pitagora Editrice, Bologna, 1983, 135-165. | MR | Zbl
[13] Modugno M., Vitolo R.: Quantum connection and Poincaré–Cartan form. Conference in honour of A. Lichnerowicz, Frascati, ottobre 1995; ed. G. Ferrarese, Pitagora, Bologna.
[14] Olver P. J., Shakiban C.: A Resolution of the Euler Operator. Proc. Am. Math. Soc. 69 (1978), 223-229. | MR | Zbl
[15] Saunders D. J.: The Geometry of Jet Bundles. Cambridge Univ. Press, 1989. | MR | Zbl
[16] Takens F.: A global version of the inverse problem of the calculus of variations. J. Diff. Geom. 14 (1979), 543-562. | MR | Zbl
[17] Tulczyjew W. M.: The Lagrange Complex. Bull. Soc. Math. France 105 (1977), 419-431. | MR | Zbl
[18] Tulczyjew W. M.: The Euler-Lagrange Resolution. Internat. Coll. on Diff. Geom. Methods in Math. Phys., Aix–en–Provence, 1979; Lecture Notes in Mathematics 836 Springer–Verlag, Berlin, 1980, 22-48. | MR
[19] Vinogradov A. M.: On the algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl. 18 (1977), 1200-1204. | MR | Zbl
[20] Vinogradov A. M.: A spectral sequence associated with a non-linear differential equation, and algebro–geometric foundations of Lagrangian field theory with constraints. Soviet Math. Dokl. 19 (1978), 144-148.
[21] Vitolo R.: Finite order Lagrangian bicomplexes. Math. Proc. of the Camb. Phil. Soc., to appear 124 n. 3, 1998.
[22] Vitolo R.: On different geometric formulations of Lagrangian formalism. preprint 1997, to appear on Diff. Geom. and Appl. | MR
[23] Wells R. O.: Differential Analysis on Complex Manifolds. GTM 65 Springer–Verlag, Berlin, 1980. | MR | Zbl