Oscillatory and asymptotic behaviour of perturbed quasilinear second order difference equations
Archivum mathematicum, Tome 34 (1998) no. 4, pp. 455-466
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with oscillatory and asymptotic behaviour of solutions of second order quasilinear difference equation of the form \[ \Delta (a_{n-1}| \Delta y_{n-1}|^{\alpha -1} \Delta y_{n-1})+ F(n, y_n)= G(n, y_n, \Delta y_n), \quad n\in N(n_0) \qquad \mathrm {(E)}\] where $\alpha >0$. Some sufficient conditions for all solutions of (E) to be oscillatory are obtained. Asymptotic behaviour of nonoscillatory solutions of (E) are also considered.
This paper deals with oscillatory and asymptotic behaviour of solutions of second order quasilinear difference equation of the form \[ \Delta (a_{n-1}| \Delta y_{n-1}|^{\alpha -1} \Delta y_{n-1})+ F(n, y_n)= G(n, y_n, \Delta y_n), \quad n\in N(n_0) \qquad \mathrm {(E)}\] where $\alpha >0$. Some sufficient conditions for all solutions of (E) to be oscillatory are obtained. Asymptotic behaviour of nonoscillatory solutions of (E) are also considered.
Classification : 39A11
Keywords: perturbed quasilinear difference equation; oscillatory solution
@article{ARM_1998_34_4_a4,
     author = {Thandapani, E. and Ramuppillai, L.},
     title = {Oscillatory and asymptotic behaviour of perturbed quasilinear second order difference equations},
     journal = {Archivum mathematicum},
     pages = {455--466},
     year = {1998},
     volume = {34},
     number = {4},
     mrnumber = {1679640},
     zbl = {0969.39004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a4/}
}
TY  - JOUR
AU  - Thandapani, E.
AU  - Ramuppillai, L.
TI  - Oscillatory and asymptotic behaviour of perturbed quasilinear second order difference equations
JO  - Archivum mathematicum
PY  - 1998
SP  - 455
EP  - 466
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a4/
LA  - en
ID  - ARM_1998_34_4_a4
ER  - 
%0 Journal Article
%A Thandapani, E.
%A Ramuppillai, L.
%T Oscillatory and asymptotic behaviour of perturbed quasilinear second order difference equations
%J Archivum mathematicum
%D 1998
%P 455-466
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a4/
%G en
%F ARM_1998_34_4_a4
Thandapani, E.; Ramuppillai, L. Oscillatory and asymptotic behaviour of perturbed quasilinear second order difference equations. Archivum mathematicum, Tome 34 (1998) no. 4, pp. 455-466. http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a4/

[1] Agarwal, R. P.: Difference Equations and Inequalities. Marcel Dekker, New York, 1992. | MR | Zbl

[2] Bing Liu, Yan, J.: Oscillatory and asymptotic behaviour of second order nonlinear difference equations. Proc. Edin. Math. Soc. 39(1996), 525-533. | MR

[3] Bing Liu, Cheng, S. S.: Positive solutions of second order nonlinear difference equation. J. Math. Anal. Appl. 204(1996), 482-493. | MR

[4] Cheng, S..,S., Li, H. J.: Bounded and zero convergent solutions of second order difference equations. J. Math. Anal. Appl. 14(1989), 141-149. | MR

[5] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities. 2nd Edition, Cambridge University Press, 1988. | MR

[6] He, H. Z.: Oscillatory and asymptotic behaviour of second order nonlinear difference equations. J. Math. Anal. Appl. 175(1993), 482-498. | MR | Zbl

[7] Szmanda, B.: Nonoscillation, oscillation and growth of solutions of nonlinear difference equations of second order. J. Math. Anal. Appl. 109(1985), 22-30. | MR | Zbl

[8] Thandapani, E.: Oscillation theorems for perturbed nonlinear second order difference equations. Computers Math. Appl. 28(1994), 309-316. | MR | Zbl

[9] Thandapani, E., Arul, R.: Oscillation and nonoscillation theorems for a class of second order quasilinear difference equations. ZAA, 16 (1997), 749-759. | MR

[10] Thandapani, E., Arul, R.: Oscillation theory for a class of second order quasilinear difference equations. Tamkang J. Math.Tamkang J. Math. 28 (1997), 229-238. | MR

[11] Trench, W. F.: Asymptotic behaviour of solutions of Emden-Fowler difference equations with oscillating coefficients. J. Math. Anal. Appl. 179(1993), 135-153. | MR

[12] Wong, P. J. Y., Agarwal, R. P.: Oscillation theorems and existence of positive monotone solutions for second order nonlinear difference equations. Math. Comput. Modelling 21(1995), 63-84. | MR

[13] Wong, P. J. Y., Agarwal, R. P.: Oscillation and monotone solutions of second order quasilinear difference equations. Funk. Ekva. 39(1996), 491-517. | MR

[14] Yu, Y. H.: Higher type oscillation criterion and Sturm type comparison theorem. Math. Nachr. 153(1991), 485-496. | MR