On the oscillation of a class of linear homogeneous third order differential equations
Archivum mathematicum, Tome 34 (1998) no. 4, pp. 435-443
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we have considered completely the equation \[ y^{\prime \prime \prime }+ a(t)y^{\prime \prime }+ b(t)y^\prime + c(t)y=0\,, \qquad \mathrm {(*)}\] where $a\in C^2([\sigma , \infty ), R)$, $b\in C^1([\sigma , \infty ),R)$, $c\in C([\sigma , \infty ), R)$ and $\sigma \in R$ such that $a(t)\le 0$, $b(t)\le 0$ and $c(t)\le 0$. It has been shown that the set of all oscillatory solutions of (*) forms a two-dimensional subspace of the solution space of (*) provided that (*) has an oscillatory solution. This answers a question raised by S. Ahmad and A.  C. Lazer earlier.
In this paper we have considered completely the equation \[ y^{\prime \prime \prime }+ a(t)y^{\prime \prime }+ b(t)y^\prime + c(t)y=0\,, \qquad \mathrm {(*)}\] where $a\in C^2([\sigma , \infty ), R)$, $b\in C^1([\sigma , \infty ),R)$, $c\in C([\sigma , \infty ), R)$ and $\sigma \in R$ such that $a(t)\le 0$, $b(t)\le 0$ and $c(t)\le 0$. It has been shown that the set of all oscillatory solutions of (*) forms a two-dimensional subspace of the solution space of (*) provided that (*) has an oscillatory solution. This answers a question raised by S. Ahmad and A.  C. Lazer earlier.
Classification : 34C10, 34C11, 34D05
Keywords: third order differential equations; oscillation; nonoscillation; asymptotic behaviour of solutions
@article{ARM_1998_34_4_a2,
     author = {Parhi, N. and Das, P.},
     title = {On the oscillation of a class of linear homogeneous third order differential equations},
     journal = {Archivum mathematicum},
     pages = {435--443},
     year = {1998},
     volume = {34},
     number = {4},
     mrnumber = {1679638},
     zbl = {0973.34023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a2/}
}
TY  - JOUR
AU  - Parhi, N.
AU  - Das, P.
TI  - On the oscillation of a class of linear homogeneous third order differential equations
JO  - Archivum mathematicum
PY  - 1998
SP  - 435
EP  - 443
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a2/
LA  - en
ID  - ARM_1998_34_4_a2
ER  - 
%0 Journal Article
%A Parhi, N.
%A Das, P.
%T On the oscillation of a class of linear homogeneous third order differential equations
%J Archivum mathematicum
%D 1998
%P 435-443
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a2/
%G en
%F ARM_1998_34_4_a2
Parhi, N.; Das, P. On the oscillation of a class of linear homogeneous third order differential equations. Archivum mathematicum, Tome 34 (1998) no. 4, pp. 435-443. http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a2/

[1] Ahmad, S., Lazer, A. C.: On the oscillatory behaviour of a class of linear third order differential equations. J. Math. Anal. Appl. 28(1970), 681-689, MR 40#1646. | MR

[2] Hanan, M.: Oscillation criteria for a third order linear differential equations. Pacific J. Math. 11(1961), 919-944, MR 26# 2695. | MR

[3] Jones, G. D.: Properties of solutions of a class of third order differential equations. J. Math. Anal. Appl. 48(1974), 165-169. | MR | Zbl

[4] Lazer, A. C.: The behaviour of solutions of the differential equation $y^{\prime \prime \prime }+ p(x)y^\prime + q(x)y=0$. Pacific J. Math. 17(1966), 435-466, MR 33#1552. | MR

[5] Leighton, W., Nehari, Z.: On the oscillation of self adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc. 89(1958), 325-377. | MR

[6] Parhi, N., Das, P.: On asymptotic property of solutions of a class of third order differential equations. Proc. Amer. Math. Soc. 110(1990), 387-393. | MR