Extremal solutions and relaxation for second order vector differential inclusions
Archivum mathematicum, Tome 34 (1998) no. 4, pp. 427-434 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider periodic and Dirichlet problems for second order vector differential inclusions. First we show the existence of extremal solutions of the periodic problem (i.e. solutions moving through the extreme points of the multifunction). Then for the Dirichlet problem we show that the extremal solutions are dense in the $C^1(T,R^N)$-norm in the set of solutions of the “convex” problem (relaxation theorem).
In this paper we consider periodic and Dirichlet problems for second order vector differential inclusions. First we show the existence of extremal solutions of the periodic problem (i.e. solutions moving through the extreme points of the multifunction). Then for the Dirichlet problem we show that the extremal solutions are dense in the $C^1(T,R^N)$-norm in the set of solutions of the “convex” problem (relaxation theorem).
Classification : 34A60, 34B15, 34C25
Keywords: lower semicontinuous multifunctions; continuous embedding; compact embedding; continuous selector; extremal solution; relaxation theorem
@article{ARM_1998_34_4_a1,
     author = {Avgerinos, Evgenios P. and Papageorgiou, Nikolaos S.},
     title = {Extremal solutions and relaxation for second order vector differential inclusions},
     journal = {Archivum mathematicum},
     pages = {427--434},
     year = {1998},
     volume = {34},
     number = {4},
     mrnumber = {1679637},
     zbl = {0973.34010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a1/}
}
TY  - JOUR
AU  - Avgerinos, Evgenios P.
AU  - Papageorgiou, Nikolaos S.
TI  - Extremal solutions and relaxation for second order vector differential inclusions
JO  - Archivum mathematicum
PY  - 1998
SP  - 427
EP  - 434
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a1/
LA  - en
ID  - ARM_1998_34_4_a1
ER  - 
%0 Journal Article
%A Avgerinos, Evgenios P.
%A Papageorgiou, Nikolaos S.
%T Extremal solutions and relaxation for second order vector differential inclusions
%J Archivum mathematicum
%D 1998
%P 427-434
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a1/
%G en
%F ARM_1998_34_4_a1
Avgerinos, Evgenios P.; Papageorgiou, Nikolaos S. Extremal solutions and relaxation for second order vector differential inclusions. Archivum mathematicum, Tome 34 (1998) no. 4, pp. 427-434. http://geodesic.mathdoc.fr/item/ARM_1998_34_4_a1/

[1] Benamara M.: Points extremaux, multiapplications et fonctionelles integrales. These de 3eme cycle, Universite de Grenoble 1975.

[2] Bressan A., Colombo G.: Extensions and selections on maps with decomposable values. Studia Math., XC(1988), 69-85. | MR

[3] Brezis H.: Analyse Fonctionelle. Masson, Paris (1983). | MR

[4] Frigon M.: Problemes aux limites pour des inclusions differentilles de type semi-continues inferieument. Rivista Math. Univ. Parma 17(1991), 87-97. | MR

[5] Gutman S.: Topological equivalence in the space of integrable vector valued functions. Proc. AMS. 93(1985), 40-42. | MR | Zbl

[6] Kisielewicz M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht, The Netherlands, (1991). | MR

[7] Klein E., Thompson A.: Theory of Correspondences. Wiley, New York, (1984). | MR | Zbl

[8] Papageorgiou N. S.: On measurable multifunctions with applications to random multivalued equations. Math. Japonica, 32, (1987), 437-464. | MR | Zbl

[9] Šeda V.: On some nonlinear boundary value problems for ordinary differential equations. Archivum Math. (Brno) 25(1989), 207-222. | MR

[10] Tolstonogov A. A.: Extreme continuous selectors for multivalued maps and the bang-bang principle for evolution equations. Soviet. Math. Doklady 42(1991), 481-485. | MR

[11] Wagner D.: Surveys of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 857-903. | MR