Fixed point theory for compact perturbations of pseudocontractive maps
Archivum mathematicum, Tome 34 (1998) no. 3, pp. 401-415
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some new fixed point results are established for mappings of the form $\,F_1+F_2\,$ with $\,F_2\,$ compact and $\,F_1\,$ pseudocontractive.
Some new fixed point results are established for mappings of the form $\,F_1+F_2\,$ with $\,F_2\,$ compact and $\,F_1\,$ pseudocontractive.
Classification : 47H06, 47H09, 47H10, 47J05
Keywords: fixed points; pseudocontractive maps
@article{ARM_1998_34_3_a8,
     author = {O'Regan, Donal},
     title = {Fixed point theory for compact perturbations of pseudocontractive maps},
     journal = {Archivum mathematicum},
     pages = {401--415},
     year = {1998},
     volume = {34},
     number = {3},
     mrnumber = {1662064},
     zbl = {0970.47038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a8/}
}
TY  - JOUR
AU  - O'Regan, Donal
TI  - Fixed point theory for compact perturbations of pseudocontractive maps
JO  - Archivum mathematicum
PY  - 1998
SP  - 401
EP  - 415
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a8/
LA  - en
ID  - ARM_1998_34_3_a8
ER  - 
%0 Journal Article
%A O'Regan, Donal
%T Fixed point theory for compact perturbations of pseudocontractive maps
%J Archivum mathematicum
%D 1998
%P 401-415
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a8/
%G en
%F ARM_1998_34_3_a8
O'Regan, Donal. Fixed point theory for compact perturbations of pseudocontractive maps. Archivum mathematicum, Tome 34 (1998) no. 3, pp. 401-415. http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a8/

[1] Banas J., Goebel K.: Measures of noncompactness in Banach spaces. Marcel Dekker, New York, 1980. | MR | Zbl

[2] Browder F. E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Symp. Pure Math, 18, Part II, Amer. Math. Soc., Providence, 1976. | MR | Zbl

[3] Day M.: Normed linear spaces. Springer Verlag, Berlin, 1973. | MR | Zbl

[4] Deimling K.: Ordinary differential equations in Banach spaces. Springer, 596, 1977. | MR | Zbl

[5] Deimling K.: Zeros of accretive operators. Manuscripta Math., 13(1974), 365–374. | MR | Zbl

[6] Dugundji J., Granas A.: Fixed point theory. Monografie Mat., PWN, Warsaw, 1982. | MR | Zbl

[7] Furi M., Pera P.: A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals. Ann. Polon. Math., 47(1987), 331–346. | MR | Zbl

[8] Gatica J. A., Kirk W. A.: Fixed point theorems for contractive mappings with applications to nonexpansive and pseudo–contractive mappings. Rocky Mount. J. Math., 4(1974), 69–79. | MR

[9] Granas A.: Sur la méthode de continuité de Poincare. C.R. Acad. Sci. Paris, 282(1976), 983–985. | MR | Zbl

[10] Kirk W. A., Schöneberg R.: Some results on pseudo–contractive mappings. Pacific Jour. Math., 71(1977), 89–100. | MR | Zbl

[11] Krawcewicz W.: Contribution à la théorie des équations nonlinéaires dan les espaces de Banach. Dissertationes Matematicae, 273(1988). | MR

[12] O’Regan D.: Theory of singular boundary value problems. World Scientific Press, Singapore, 1994. | MR | Zbl

[13] O’Regan D.: Some fixed point theorems for concentrative mappings between locally convex linear topological spaces. Jour. Nonlinear Anal., 27(1996), 1437–1446. | MR | Zbl

[14] O’Regan D.: Continuation fixed point theorems for locally convex linear topological spaces. Mathematical and Computer Modelling, 24(1996), 57–70. | MR | Zbl

[15] Petryshyn W. V.: Structure of the fixed point set of $\,k$–set contractions. Arch. Rational Mech. Anal., 40(1970/71), 312–328. | MR

[16] Precup R.: A Granas type approach to some continuation theorems and periodic boundary value problems with impulses. preprint. | Zbl

[17] Schöneberg R.: On the domain invariance theorem for accretive mappings. J. London Math. Soc., 24(1981), 548–554. | MR

[18] Zeidler E.: Nonlinear functional analysis and its applications. Vol I, Springer, New York, 1986. | MR | Zbl