Higher order contact of real curves in a real hyperquadric. II
Archivum mathematicum, Tome 34 (1998) no. 3, pp. 361-377 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\Phi $ be an Hermitian quadratic form, of maximal rank and index $(n,1)$, defined over a complex $(n+1)$ vector space $V$. Consider the real hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\{[\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\}. \] Let $G$ be the subgroup of the special linear group which leaves $ Q $ invariant and $D$ the $(2n)-$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, tangent to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$.
Let $\Phi $ be an Hermitian quadratic form, of maximal rank and index $(n,1)$, defined over a complex $(n+1)$ vector space $V$. Consider the real hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\{[\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\}. \] Let $G$ be the subgroup of the special linear group which leaves $ Q $ invariant and $D$ the $(2n)-$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, tangent to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$.
Classification : 32F40, 53A55, 53B25, 53B35
Keywords: geometric structures on manifolds; local submanifolds; contacttheory; actions of groups
@article{ARM_1998_34_3_a4,
     author = {Villarroel, Yuli},
     title = {Higher order contact of real curves in a real hyperquadric. {II}},
     journal = {Archivum mathematicum},
     pages = {361--377},
     year = {1998},
     volume = {34},
     number = {3},
     mrnumber = {1662048},
     zbl = {0967.53015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a4/}
}
TY  - JOUR
AU  - Villarroel, Yuli
TI  - Higher order contact of real curves in a real hyperquadric. II
JO  - Archivum mathematicum
PY  - 1998
SP  - 361
EP  - 377
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a4/
LA  - en
ID  - ARM_1998_34_3_a4
ER  - 
%0 Journal Article
%A Villarroel, Yuli
%T Higher order contact of real curves in a real hyperquadric. II
%J Archivum mathematicum
%D 1998
%P 361-377
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a4/
%G en
%F ARM_1998_34_3_a4
Villarroel, Yuli. Higher order contact of real curves in a real hyperquadric. II. Archivum mathematicum, Tome 34 (1998) no. 3, pp. 361-377. http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a4/

[1] Bredon G. E.: Introduction to Compact Transformations groups. Academic. Press, New York (1972). | MR

[2] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. II. Ouvres II, 2, 1231-1304; ibid III,2, 1217-1238.

[3] Cartan E.: Théorie des groupes finis el la géométrie différentielle traitées par la Methode du repère mobile. Gauthier-Villars, Paris, (1937).

[4] Chern S. S., Moser J. K.: Real hypersurfaces in complex manifolds. Acta mathematica 133(1975), 219-271. | MR | Zbl

[5] Chern S. S., Cowen J. M.: Frenet frames along holomorphic curves. Topics in Differential Geometry, 1972-1973, 191-203. Dekker, New York, 1974. | MR

[6] Ehresmann C.: Les prolongements d’un space fibré diferéntiable. C.R. Acad. Sci. Paris, 240(1955), 1755-1757. | MR

[7] Green M. L.: The moving frame, Differential invariants and rigity theorems for curves in homogeneous spaces. Duke Math. Journal, Vol 45, No.4 (1978), 735-779. | MR

[8] Griffiths P.: On Cartan’s method of Lie groups and moving frames as applied to existence and uniqueness questions in differential geometry. Duke Math. J. 41(1974), 775-814. | MR

[9] Hermann R.: Equivalence invariants for submanifolds of Homogeneous Spaces. Math. Annalen 158(1965), 284-289. | MR | Zbl

[10] Hermann R.: Existence in the large of parallelism homomorphisms. Trans. Am. Math. Soc. 108, 170-183 (1963). | MR

[11] Jensen G. R.: Higher Order Contact of Submanifolds of Homogeneous Spaces. Lectures notes in Math. Vol. 610, Springer-Verlag, New York (1977). | MR | Zbl

[12] Jensen G. R.: Deformation of submanifolds of homogeneous spaces. J. of Diff. Geometry, 16(1981), 213-246. | MR | Zbl

[13] Kolář I.: Canonical forms on the prolongations of principle fibre bundles. Rev. Roum. Math. Pures et Appl., Bucarest, Tome XVI, No.7 (1971), 1091-1106. | MR

[14] Rodrigues A. M.: Contact and equivalence of submanifolds of homogeneous spaces, aspects of Math. and its Applications. Elsevier Science Publishers B.V. (1986). | MR

[15] Villarroel Y.: Differential Geometry and Applications. Proc. Conf. Brno (1996), 207-214. | MR

[16] Villarroel Y.: Higher order contact of real curves in a real hyperquadric. Archivum mathematicum, Tomus 32(1996), 57-73. | MR | Zbl