Properties of a new class of recursively defined Baskakov-type operators
Archivum mathematicum, Tome 34 (1998) no. 3, pp. 353-359 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By starting from a recent paper by Campiti and Metafune [7], we consider a generalization of the Baskakov operators, which is introduced by replacing the binomial coefficients with other coefficients defined recursively by means of two fixed sequences of real numbers. In this paper, we indicate some of their properties, including a decomposition into an expression which depends linearly on the fixed sequences and an estimation of the corresponding order of approximation, in terms of the modulus of continuity.
By starting from a recent paper by Campiti and Metafune [7], we consider a generalization of the Baskakov operators, which is introduced by replacing the binomial coefficients with other coefficients defined recursively by means of two fixed sequences of real numbers. In this paper, we indicate some of their properties, including a decomposition into an expression which depends linearly on the fixed sequences and an estimation of the corresponding order of approximation, in terms of the modulus of continuity.
Classification : 26D15, 41A25, 41A35, 41A36
Keywords: Baskakov-type operators; order of approximation; modulus of continuity
@article{ARM_1998_34_3_a3,
     author = {Agratini, Octavian},
     title = {Properties of a new class of recursively defined {Baskakov-type} operators},
     journal = {Archivum mathematicum},
     pages = {353--359},
     year = {1998},
     volume = {34},
     number = {3},
     mrnumber = {1662044},
     zbl = {0966.41013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a3/}
}
TY  - JOUR
AU  - Agratini, Octavian
TI  - Properties of a new class of recursively defined Baskakov-type operators
JO  - Archivum mathematicum
PY  - 1998
SP  - 353
EP  - 359
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a3/
LA  - en
ID  - ARM_1998_34_3_a3
ER  - 
%0 Journal Article
%A Agratini, Octavian
%T Properties of a new class of recursively defined Baskakov-type operators
%J Archivum mathematicum
%D 1998
%P 353-359
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a3/
%G en
%F ARM_1998_34_3_a3
Agratini, Octavian. Properties of a new class of recursively defined Baskakov-type operators. Archivum mathematicum, Tome 34 (1998) no. 3, pp. 353-359. http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a3/

[1] Agratini O.: Construction of Baskakov-type operators by wavelets. Rev. d’Analyse Num. et de Théorie de l’Approx., tome 26(1997), 3-10. | MR | Zbl

[2] Altomare F.: Positive projections approximation processes and degenerate diffusion equations. Conf. Sem. Mat. Univ. Bari, 241(1991), 43-68. | MR | Zbl

[3] Altomare F., Campiti M.: Korovkin-type Approximation Theory and its Applications. de Gruyter Studies in Mathematics, Vol. 17, de Gruyter, Berlin/New-York, 1994. | MR | Zbl

[4] Altomare F., Romanelli S.: On some classes of Lototsky-Schnabl operators. Note Mat., 12(1992), 1-13. | MR | Zbl

[5] Baskakov V. A.: An example of a sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR, 113(1957), 249-251 (in Russian). | MR

[6] Campiti M.: Limit semigroups of Stancu-Mühlbach operators associated with positive projections. Ann. Sc. Norm. Sup. Pisa, Cl. Sci., 19(1992), 4, 51-67. | MR | Zbl

[7] Campiti M., Metafune G.: Approximation properties of recursively defined Bernstein-type operators. Journal of Approx. Theory, 87(1996), 243-269. | MR | Zbl

[8] Campiti M., Metafune G.: Evolution equations associated with recursively defined Bernstein-type operators. Journal of Approx. Theory, 87(1996), 270-290. | MR | Zbl

[9] Stancu D. D.: Two classes of positive linear operators. Analele Univ. Timişoara, Ser. St. Matem. 8(1970), 213-220. | MR | Zbl

[10] Stancu D. D. : Approximation of functions by means of some new classes of positive linear operators. in “Numerische Methoden der Approximations Theorie”, Vol. 1 (Proc. Conf. Math. Res. Inst., Oberwolfach, 1971; eds. L. Collatz, G. Meinardus), 187-203, Basel: Birkhäuser, 1972. | MR