$v$-projective symmetries of fibered manifolds
Archivum mathematicum, Tome 34 (1998) no. 3, pp. 347-352
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove that the set of the $v$-projective symmetries is a Lie algebra.
We prove that the set of the $v$-projective symmetries is a Lie algebra.
@article{ARM_1998_34_3_a2,
author = {Tig\u{a}eru, C\u{a}t\u{a}lin},
title = {$v$-projective symmetries of fibered manifolds},
journal = {Archivum mathematicum},
pages = {347--352},
year = {1998},
volume = {34},
number = {3},
mrnumber = {1662040},
zbl = {0968.53015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a2/}
}
Tigăeru, Cătălin. $v$-projective symmetries of fibered manifolds. Archivum mathematicum, Tome 34 (1998) no. 3, pp. 347-352. http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a2/
[1] Theodorescu, I. D.: Spatii cu conexiune aproape proiectiva. Conexiuni pe varietati diferentiabile, Bucuresti 1980, 116-147.
[2] Nicolescu, L.: Geometria de deformare a doua conexiuni lineare. Capitole speciale de geometrie diferentiala, Bucuresti 1981, 118-160.
[3] Prakash, N.: Projective mappings on differentiable manifolds. Rocky Mountain J. of Math., 17, No. 3 1987, 511-533. | MR | Zbl
[4] Eisenhart, L. P.: Non-Riemannian geometry. A.M.S. 1927. | Zbl
[5] Kobayashi, S.: Foundations of differential geometry. K. Nomizu, Wiley, Interscience Publ., New York-London, vol. I 1963. | Zbl