New examples of compact cosymplectic solvmanifolds
Archivum mathematicum, Tome 34 (1998) no. 3, pp. 337-345 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we present new examples of $(2n+1)$-dimensional compact cosymplectic manifolds which are not topologically equivalent to the canonical examples, i.e., to the pro\-duct of the $(2m+1)$-dimensional real torus and the $r$-dimensional complex projective space, with $m,r\geq 0$ and $m+r=n.$ These new examples are compact solvmanifolds and they are constructed as suspensions with fibre the $2n$-dimensional real torus. In the particular case $n=1,$ using the examples obtained, we conclude that a $3$-dimensional compact flat orientable Riemannian manifold with non-zero first Betti number admits a cosymplectic structure. Furthermore, if the first Betti number is equal to $1$ then such a manifold is not topologically equivalent to the global product of a compact Kähler manifold with the circle $S^1.$
In this paper we present new examples of $(2n+1)$-dimensional compact cosymplectic manifolds which are not topologically equivalent to the canonical examples, i.e., to the pro\-duct of the $(2m+1)$-dimensional real torus and the $r$-dimensional complex projective space, with $m,r\geq 0$ and $m+r=n.$ These new examples are compact solvmanifolds and they are constructed as suspensions with fibre the $2n$-dimensional real torus. In the particular case $n=1,$ using the examples obtained, we conclude that a $3$-dimensional compact flat orientable Riemannian manifold with non-zero first Betti number admits a cosymplectic structure. Furthermore, if the first Betti number is equal to $1$ then such a manifold is not topologically equivalent to the global product of a compact Kähler manifold with the circle $S^1.$
Classification : 53C15, 53C55, 53D35
Keywords: cosymplectic manifolds; solvmanifolds; Kähler manifolds; suspensions; flat Riemannian manifolds
@article{ARM_1998_34_3_a1,
     author = {Marrero, J. C. and Padron, E.},
     title = {New examples of compact cosymplectic solvmanifolds},
     journal = {Archivum mathematicum},
     pages = {337--345},
     year = {1998},
     volume = {34},
     number = {3},
     mrnumber = {1662115},
     zbl = {0968.53054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a1/}
}
TY  - JOUR
AU  - Marrero, J. C.
AU  - Padron, E.
TI  - New examples of compact cosymplectic solvmanifolds
JO  - Archivum mathematicum
PY  - 1998
SP  - 337
EP  - 345
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a1/
LA  - en
ID  - ARM_1998_34_3_a1
ER  - 
%0 Journal Article
%A Marrero, J. C.
%A Padron, E.
%T New examples of compact cosymplectic solvmanifolds
%J Archivum mathematicum
%D 1998
%P 337-345
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a1/
%G en
%F ARM_1998_34_3_a1
Marrero, J. C.; Padron, E. New examples of compact cosymplectic solvmanifolds. Archivum mathematicum, Tome 34 (1998) no. 3, pp. 337-345. http://geodesic.mathdoc.fr/item/ARM_1998_34_3_a1/

[1] Blair D. E.: Contact manifolds in Riemannian geometry. Lecture Notes in Math., 509, Springer-Verlag, Berlin, (1976). | MR | Zbl

[2] Blair D. E., Goldberg S. I.: Topology of almost contact manifolds. J. Diff. Geometry, 1, 347-354 (1967). | MR | Zbl

[3] Chinea D., León M. de, Marrero J. C.: Topology of cosymplectic manifolds. J. Math. Pures Appl., 72, 567-591 (1993). | MR | Zbl

[4] Hector G., Hirsch U.: Introduction to the Geometry of Foliations. Part A. Aspects of Math., Friedr. Vieweg and Sohn, (1981). | MR | Zbl

[5] León M. de, Marrero J. C.: Compact cosymplectic manifolds with transversally positive definite Ricci tensor. Rendiconti di Matematica, Serie VII, 17 Roma, 607-624 (1997). | MR | Zbl

[6] Wolf J. A.: Spaces of constant curvature. 5nd ed., Publish or Perish, Inc., Wilmington, Delaware, (1984). | MR | Zbl