Natural affinors on $r$-jet prolongation of the tangent bundle
Archivum mathematicum, Tome 34 (1998) no. 2, pp. 321-328
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We deduce that for $n\ge 2$ and $r\ge 1$, every natural affinor on $J^rT$ over $n$-manifolds is of the form $\lambda \delta $ for a real number $\lambda $, where $\delta $ is the identity affinor on $J^rT$.
We deduce that for $n\ge 2$ and $r\ge 1$, every natural affinor on $J^rT$ over $n$-manifolds is of the form $\lambda \delta $ for a real number $\lambda $, where $\delta $ is the identity affinor on $J^rT$.
@article{ARM_1998_34_2_a9,
author = {Mikulski, W. M.},
title = {Natural affinors on $r$-jet prolongation of the tangent bundle},
journal = {Archivum mathematicum},
pages = {321--328},
year = {1998},
volume = {34},
number = {2},
mrnumber = {1645340},
zbl = {0915.58006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a9/}
}
Mikulski, W. M. Natural affinors on $r$-jet prolongation of the tangent bundle. Archivum mathematicum, Tome 34 (1998) no. 2, pp. 321-328. http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a9/
[1] Doupovec, M.: Natural transformations between $TTT^*M$ and $TT^*TM$. Czechoslovak Math. J. 43 (118) 1993, 599-613. | MR | Zbl
[2] Gancarzewicz, J., Kolář, I.: Natural affinors on the extended $r$-th order tangent bundles. Suppl. Rendiconti Circolo Mat. Palermo, 1993. | MR
[3] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Verlag, Berlin, 1993. | MR
[4] Kolář, I., Modugno, M.: Torsion of connections on some natural bundles. Diff. Geom. and Appl. 2 (1992), 1-16. | MR
[5] Kurek, J.: Natural affinors on higher order cotangent bundles. Arch. Math. (Brno) 28 (1992), 175-180. | MR
[6] Zajtz, A.: On the order of natural operators and liftings. Ann. Polon. Math. 49 (1988), 169-178. | MR