Anti-holonomic jets and the Lie bracket
Archivum mathematicum, Tome 34 (1998) no. 2, pp. 311-319 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Second order anti-holonomic jets as anti-symmetric parts of second order semi-holonomic jets are introduced. The anti-holonomic nature of the Lie bracket is shown. A general result on universality of the Lie bracket is proved.
Second order anti-holonomic jets as anti-symmetric parts of second order semi-holonomic jets are introduced. The anti-holonomic nature of the Lie bracket is shown. A general result on universality of the Lie bracket is proved.
Classification : 53A55, 58A20
Keywords: jet; semi-holonomic jet; anti-holonomic jet; velocity; lie bracket; natural differential operator
@article{ARM_1998_34_2_a8,
     author = {Krupka, Michal},
     title = {Anti-holonomic jets and the {Lie} bracket},
     journal = {Archivum mathematicum},
     pages = {311--319},
     year = {1998},
     volume = {34},
     number = {2},
     mrnumber = {1645336},
     zbl = {0915.58005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a8/}
}
TY  - JOUR
AU  - Krupka, Michal
TI  - Anti-holonomic jets and the Lie bracket
JO  - Archivum mathematicum
PY  - 1998
SP  - 311
EP  - 319
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a8/
LA  - en
ID  - ARM_1998_34_2_a8
ER  - 
%0 Journal Article
%A Krupka, Michal
%T Anti-holonomic jets and the Lie bracket
%J Archivum mathematicum
%D 1998
%P 311-319
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a8/
%G en
%F ARM_1998_34_2_a8
Krupka, Michal. Anti-holonomic jets and the Lie bracket. Archivum mathematicum, Tome 34 (1998) no. 2, pp. 311-319. http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a8/

[1] Ehresmann, Ch.: Extension du calcul des jets aux jets non holonomes. C. R. Acad. Sci., Paris 239, 1762–1764 (1954). | MR | Zbl

[2] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 434 p. (1993). | MR

[3] Kolář I.: On the torsion of spaces with connection. Czechoslovak Math. J. 21 (96) 1971, 124–136. | MR

[4] Krupka D., Janyška J.: Lectures on Differential Invariants. Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis, Mathematica, 1, University J. E. Purkyne, Brno. 193 p. (1990). | MR

[5] Krupka D., Mikolášová V.: On the uniqueness of some differential invariants: $d$, $[,]$, $\nabla $. Czechoslovak Math. J. 34 (109) 1984, 588–597. | MR | Zbl

[6] Krupka M.: First order natural operators on $G$-structures. Preprint No. GA 3/97, Dept. of Math. and Comp. Sc., Silesian Univ. Opava, 1997. | MR

[7] Krupka M.: Natural operators on vector fields and vector distributions. doctoral dissertation, Masaryk University, Brno, 1995.

[8] Krupka M.: On the order reduction of differential invariants. Kowalski, O. et al. (eds.), Differential Geometry and its Applications. Proceedings of the 5th international conference, Opava, Czechoslovakia, August 24–28, 1992, Open Education and Sciences, Opava, Silesian Univ. Math. Publ. (Opava). 1, 321–334 (1993). | MR

[9] Pradines J.: Representation des jets non holonomes par des morphisms vectoriels doubles soudés. CRAS Paris, series A 278, 1523–1526 (1974). | MR

[10] Saunders D.: The Geometry of Jet Bundles. Cambridge Univ. Press, 1989. | MR | Zbl