Keywords: symplectic manifold; Hamiltonian lift; natural operator
@article{ARM_1998_34_2_a6,
author = {D\k{e}becki, Jacek},
title = {Invariant vector fields of {Hamiltonians}},
journal = {Archivum mathematicum},
pages = {295--300},
year = {1998},
volume = {34},
number = {2},
mrnumber = {1645328},
zbl = {0911.53016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a6/}
}
Dębecki, Jacek. Invariant vector fields of Hamiltonians. Archivum mathematicum, Tome 34 (1998) no. 2, pp. 295-300. http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a6/
[1] Dȩbecki J., Gancarzewicz J., de León M., Mikulski W.: Invariants of Lagrangians and their calssifications. J. Math. Phys., Vol. 35, No. 9, 1994, pp. 4568–4593. | MR
[2] Dȩbecki J.: Natural transformations of Lagrangians into $p$-forms on the tangent bundle; Quantization, Coherent States, and Complex Structures. Plenum Publishing Corp., New York, 1995, pp. 141–146. | MR
[3] Doupovec M., Kurek J.: Natural operations of Hamiltonian type on the cotangent bundle. Suppl. Rend. Circ. Mat. Palermo, Serie II 34 (1995).
[4] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. | MR
[5] de León M., Rodrigues P. R.: Methods of Differential Geometry in Analytical Mechanics. North-Holland Math. Ser., Vol. 152, Amsterdam, 1989. | MR