Invariant vector fields of Hamiltonians
Archivum mathematicum, Tome 34 (1998) no. 2, pp. 295-300
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A complete classification of natural transformations of Hamiltonians into vector fields on symplectic manifolds is given herein.
A complete classification of natural transformations of Hamiltonians into vector fields on symplectic manifolds is given herein.
Classification : 37J99, 53C15, 58F05
Keywords: symplectic manifold; Hamiltonian lift; natural operator
@article{ARM_1998_34_2_a6,
     author = {D\k{e}becki, Jacek},
     title = {Invariant vector fields of {Hamiltonians}},
     journal = {Archivum mathematicum},
     pages = {295--300},
     year = {1998},
     volume = {34},
     number = {2},
     mrnumber = {1645328},
     zbl = {0911.53016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a6/}
}
TY  - JOUR
AU  - Dębecki, Jacek
TI  - Invariant vector fields of Hamiltonians
JO  - Archivum mathematicum
PY  - 1998
SP  - 295
EP  - 300
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a6/
LA  - en
ID  - ARM_1998_34_2_a6
ER  - 
%0 Journal Article
%A Dębecki, Jacek
%T Invariant vector fields of Hamiltonians
%J Archivum mathematicum
%D 1998
%P 295-300
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a6/
%G en
%F ARM_1998_34_2_a6
Dębecki, Jacek. Invariant vector fields of Hamiltonians. Archivum mathematicum, Tome 34 (1998) no. 2, pp. 295-300. http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a6/

[1] Dȩbecki J., Gancarzewicz J., de León M., Mikulski W.: Invariants of Lagrangians and their calssifications. J. Math. Phys., Vol. 35, No. 9, 1994, pp. 4568–4593. | MR

[2] Dȩbecki J.: Natural transformations of Lagrangians into $p$-forms on the tangent bundle; Quantization, Coherent States, and Complex Structures. Plenum Publishing Corp., New York, 1995, pp. 141–146. | MR

[3] Doupovec M., Kurek J.: Natural operations of Hamiltonian type on the cotangent bundle. Suppl. Rend. Circ. Mat. Palermo, Serie II 34 (1995).

[4] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. | MR

[5] de León M., Rodrigues P. R.: Methods of Differential Geometry in Analytical Mechanics. North-Holland Math. Ser., Vol. 152, Amsterdam, 1989. | MR