On skew 2-projectable almost complex structures on $TM$
Archivum mathematicum, Tome 34 (1998) no. 2, pp. 285-293 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We deal with a $(1, 1)$-tensor field $\alpha $ on the tangent bundle $TM$ preserving vertical vectors and such that $J\alpha =-\alpha J$ is a $(1, 1)$-tensor field on $M$, where $J$ is the canonical almost tangent structure on $TM$. A connection $\Gamma _{\alpha }$ on $TM$ is constructed by $\alpha $. It is shown that if $\alpha $ is a $VB$-almost complex structure on $TM$ without torsion then $\Gamma _{\alpha }$ is a unique linear symmetric connection such that $\alpha (\Gamma _{\alpha })=\Gamma _{\alpha }$ and $\nabla _{\Gamma _{\alpha }} (J\alpha ) =0$.
We deal with a $(1, 1)$-tensor field $\alpha $ on the tangent bundle $TM$ preserving vertical vectors and such that $J\alpha =-\alpha J$ is a $(1, 1)$-tensor field on $M$, where $J$ is the canonical almost tangent structure on $TM$. A connection $\Gamma _{\alpha }$ on $TM$ is constructed by $\alpha $. It is shown that if $\alpha $ is a $VB$-almost complex structure on $TM$ without torsion then $\Gamma _{\alpha }$ is a unique linear symmetric connection such that $\alpha (\Gamma _{\alpha })=\Gamma _{\alpha }$ and $\nabla _{\Gamma _{\alpha }} (J\alpha ) =0$.
Classification : 53C05, 53C15, 58A20
Keywords: tangent bundle; skew 2-projectable; $(1, 1)$-vector fields; almost complex structure; connection
@article{ARM_1998_34_2_a5,
     author = {Dekr\'et, Anton},
     title = {On skew 2-projectable almost complex structures on $TM$},
     journal = {Archivum mathematicum},
     pages = {285--293},
     year = {1998},
     volume = {34},
     number = {2},
     mrnumber = {1645324},
     zbl = {0910.53020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a5/}
}
TY  - JOUR
AU  - Dekrét, Anton
TI  - On skew 2-projectable almost complex structures on $TM$
JO  - Archivum mathematicum
PY  - 1998
SP  - 285
EP  - 293
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a5/
LA  - en
ID  - ARM_1998_34_2_a5
ER  - 
%0 Journal Article
%A Dekrét, Anton
%T On skew 2-projectable almost complex structures on $TM$
%J Archivum mathematicum
%D 1998
%P 285-293
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a5/
%G en
%F ARM_1998_34_2_a5
Dekrét, Anton. On skew 2-projectable almost complex structures on $TM$. Archivum mathematicum, Tome 34 (1998) no. 2, pp. 285-293. http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a5/

[1] Cabras, A., Kolář, I.: Special tangent valued forms and the Frölicher-Nijenhuis bracket. Arch. Mathematicum (Brno) Tom. 29 (1993), 71–82. | MR

[2] Dekrét, A.: Almost complex structures and connections on $TM$. Proc. Conf. Differential Geometry and Applications, Masaryk Univ. Brno (1996), 133–140. | MR

[3] Gancarzewicz, J., Mikulski, W., Pogula, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. Journal 135 (September 1994), 1–41. | MR

[4] Griffone, J.: Structure presque-tangent et connections I. Ann. Inst. Gourier (Grenoble) 22 (1972), 287–334. | MR

[5] Janyška, J.: Remarks on the Nijenhuis tensor and almost comples connections. Arch. Math. (Brno) 26 No. 4 (1990), 229–240. | MR

[6] Kobayashi, S., Nomizu, K.: Foundations of differential geometry II. Interscience publishers, 1969.

[7] Kolář, I., Michor, P.W., Slovák, J.: Natural operations in differential geometry. Springer-Verlag, 1993. | MR

[8] Yano, K., Ishihara, S.: Tangent and cotangent bundles. M. Dekker Inc. New York, 1973. | MR

[9] Yano, K.: Differential geometry on complex and almost complex spaces. Pergamon Press, New York, 1965. | MR | Zbl