@article{ARM_1998_34_2_a4,
author = {Halidias, Nikolaos and Papageorgiou, Nikolaos S.},
title = {Second order multivalued boundary value problems},
journal = {Archivum mathematicum},
pages = {267--284},
year = {1998},
volume = {34},
number = {2},
mrnumber = {1645320},
zbl = {0915.34021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a4/}
}
Halidias, Nikolaos; Papageorgiou, Nikolaos S. Second order multivalued boundary value problems. Archivum mathematicum, Tome 34 (1998) no. 2, pp. 267-284. http://geodesic.mathdoc.fr/item/ARM_1998_34_2_a4/
[1] Bernfeld S., Lakshmikantham V.: An Introduction to Nonlinear Boundary Value Problems. Academic Press, New York (1974). | MR | Zbl
[2] Bressan A., Colombo G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69–85. | MR | Zbl
[3] Brezis H.: Analyse Fonctionelle. Masson, Paris (1983). | MR
[4] Cabada A., Nieto J.: Extremal solutions of second order nonlinear boundary value problems. Appl. Math. Comp. 40 (1990), 135–145. | MR
[5] Chang K. C. : The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure Appl. Math. 33 (1980), 117–146. | MR | Zbl
[6] DeBlasi F. S., Myjak J.: On continuous approximations for multifunctions. Pacific J. Math. 123 (1986), 9–31. | MR
[7] Dunford N., Schwartz J.: Linear Operators I. Wiley, New York (1958).
[8] Erbe L., Krawcewicz W.: Boundary value problems for differential inclusions $y^{^{\prime \prime }}\in F\left(t,y,y^{^{\prime }}\right)$. Annales Polon Math. 56 (1990), 195–226. | MR
[9] Gaines R., Mawhin J.: Coincidence Degree and Nonlinear Differential Equations. Springer Verlag, Berlin (1977). | MR | Zbl
[10] Gao W., Wang J.: On nonlinear second order periodic boundary value problem with Caratheodory functions. Annales Polon Math. 62 (1995), 283–291. | MR
[11] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer Verlag, New York (1977). | MR | Zbl
[12] Himmelberg C.: Fixed points of compact multifunctions. J. Math. Anal. Appl. 38 (1972). | MR | Zbl
[13] Kandilakis D., Papageorgiou N. S.: Dirichlet and periodic problems for second order differential inclusions. Houston J. Math. – to appear.
[14] Klein E., Thompson A.: Theory of Correspondences. Wiley, New York (1984). | MR | Zbl
[15] Kravvaritis D., Papageorgiou N. S.: Boundary value problems for nonconvex differential inclusions. J. Math. Anal. Appl. 185 (1994), 146–160. | MR | Zbl
[16] Leela S.: Monotone method for second order periodic boundary value problems. Nonl. Anal. – TMA 7 (1983), 349–355. | MR | Zbl
[17] Marano S.: Existence theorems for multivalued boundary value problems. Bull. Austr. Math. Soc. 45 (1992), 249–260. | MR
[18] Mönch H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonl. Anal. – TMA 4 (1980), 985–999. | MR
[19] Nieto J.: Nonlinear second order periodic value problems with Caratheodory functions. Appl. Anal. 34 (1989), 111–128.
[20] Nieto J., Cabada A.: A generalized upper and lower solutions method for nonlinear second order ordinary differential equations. J. Appl. Math. Stoch. Anal. 5 (1992), 157–166. | MR | Zbl
[21] Nkashama M. N.: A generalized upper and lower solutions method and multiplicity results for nonlinear first–order ordinary differential equations. J. Math. Anal. Appl. 140 (1989), 381–395. | MR | Zbl
[22] Omari P.: A monotone method for constructing extremal solutions of second order scalar boundary value problems. Appl. Math. Comp. 18 (1986), 257–275. | MR | Zbl
[23] Omari P., Trombetta M.: Remarks on the lower and upper solutions method for second and third order periodic boundary value problems. Appl. Math. Comp. 50 (1992), 1–21. | MR | Zbl
[24] Papageorgiou N. S.: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math.. Sci. 10 10 (1987), 433–442. | MR | Zbl
[25] Papageorgiou N. S.: On measurable multifunctions with applications to multivalued equations. Math. Japonica 32 (1987), 437–464. | MR
[26] Papageorgiou N. S. : Decomposable sets in the Lebesgue–Bochner spaces. Comm. Math. Univ. Sancti Pauli 37 (1988), pp. 49–62. | MR | Zbl
[27] Papageorgiou N. S., Papalini F.: Periodic and boundary value problems for second order differential equations. Trans. AMS – to appear. | MR | Zbl
[28] Vrabie I.: Compactness Methods for Nonlinear Evolutions. Longman Scientific and Technical, Essex, U.K. (1987). | MR | Zbl
[29] Wagner D.: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859–903. | MR | Zbl