A note on asymptotic expansion for a periodic boundary condition
Archivum mathematicum, Tome 34 (1998) no. 1, pp. 83-92
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The aim of this contribution is to present a new result concerning asymptotic expansion of solutions of the heat equation with periodic Dirichlet–Neuman boundary conditions with the period going to zero in $3$D.
The aim of this contribution is to present a new result concerning asymptotic expansion of solutions of the heat equation with periodic Dirichlet–Neuman boundary conditions with the period going to zero in $3$D.
Classification :
35B10, 35B27, 35C20, 35K05, 35K10
Keywords: Heat equation; asymptotic expansion; homogenization
Keywords: Heat equation; asymptotic expansion; homogenization
@article{ARM_1998_34_1_a8,
author = {Filo, J\'an},
title = {A note on asymptotic expansion for a periodic boundary condition},
journal = {Archivum mathematicum},
pages = {83--92},
year = {1998},
volume = {34},
number = {1},
mrnumber = {1629668},
zbl = {0911.35014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a8/}
}
Filo, Ján. A note on asymptotic expansion for a periodic boundary condition. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 83-92. http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a8/
[1] J. Bear: Hydraulics of Groundwater. McGraw-Hill, Inc. New-York 1979.
[2] H. W. Alt, S. Luckhaus: Quasilinear elliptic–parabolic differential equations. Math. Z., 183 (1983), 311-341. | MR | Zbl
[3] J. Filo, S. Luckhaus: Asymptotic expansion for a periodic boundary condition. J. Diff. Equations, 120 (1995), 133–173. | MR | Zbl
[4] S. Luckhaus, J. Filo: Asymptotic expansion for periodic boundary conditions in more space dimensions. in preparation.
[5] O. A. Ladyzenskaja V. A. Solonikov, N. N. Uralceva: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, Vol. 23, Amer. Math. Soc., Providence, R1., 1968.