Bifurcation of periodic and chaotic solutions in discontinuous systems
Archivum mathematicum, Tome 34 (1998) no. 1, pp. 73-82 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Chaos generated by the existence of Smale horseshoe is the well-known phenomenon in the theory of dynamical systems. The Poincaré-Andronov-Melnikov periodic and subharmonic bifurcations are also classical results in this theory. The purpose of this note is to extend those results to ordinary differential equations with multivalued perturbations. We present several examples based on our recent achievements in this direction. Singularly perturbed problems are studied as well. Applications are given to ordinary differential equations with both dry friction and relay hysteresis terms.
Chaos generated by the existence of Smale horseshoe is the well-known phenomenon in the theory of dynamical systems. The Poincaré-Andronov-Melnikov periodic and subharmonic bifurcations are also classical results in this theory. The purpose of this note is to extend those results to ordinary differential equations with multivalued perturbations. We present several examples based on our recent achievements in this direction. Singularly perturbed problems are studied as well. Applications are given to ordinary differential equations with both dry friction and relay hysteresis terms.
Classification : 34A60, 34C23, 34C25, 34E15, 37D45, 37J40, 58F13
Keywords: Chaotic and periodic solutions; differential inclusions; relay hysteresis
@article{ARM_1998_34_1_a7,
     author = {Fe\v{c}kan, Michal},
     title = {Bifurcation of periodic and chaotic solutions in discontinuous systems},
     journal = {Archivum mathematicum},
     pages = {73--82},
     year = {1998},
     volume = {34},
     number = {1},
     mrnumber = {1629664},
     zbl = {0914.34039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a7/}
}
TY  - JOUR
AU  - Fečkan, Michal
TI  - Bifurcation of periodic and chaotic solutions in discontinuous systems
JO  - Archivum mathematicum
PY  - 1998
SP  - 73
EP  - 82
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a7/
LA  - en
ID  - ARM_1998_34_1_a7
ER  - 
%0 Journal Article
%A Fečkan, Michal
%T Bifurcation of periodic and chaotic solutions in discontinuous systems
%J Archivum mathematicum
%D 1998
%P 73-82
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a7/
%G en
%F ARM_1998_34_1_a7
Fečkan, Michal. Bifurcation of periodic and chaotic solutions in discontinuous systems. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 73-82. http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a7/

[1] Andronow A. A., Witt A. A., Chaikin S. E.: Theorie der Schwingungen I. Akademie Verlag, Berlin, 1965

[2] Bliman P. A., Krasnosel’skii A. M.: Periodic solutions of linear systems coupled with relay. Proc. 2nd. World Congr. Nonl. Anal., Athens – 96, Nonl. Anal., Th., Meth., Appl., 30 (1997), 687–696 | MR | Zbl

[3] Butenin N. V., Nejmark Y. I., Fufaev N. A.: An Introduction to the Theory of Nonlinear Oscillations. Nauka, Moscow, 1987, (in Russian) | MR

[4] Chicone C.: Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators. J. Differential Equations, 112 (1994), 407–447 | MR

[5] Deimling K.: Multivalued Differential Equations. W. De Gruyter, Berlin, 1992 | MR | Zbl

[6] Deimling K.: Multivalued differential equations and dry friction problems. in Proc. Conf. Differential and Delay Equations, Ames, Iowa 1991 (A. M. Fink, R. K. Miller, W. Kliemann, eds.), World Scientific, Singapore 1992, 99–106 | MR

[7] Deimling K., Szilágyi P.: Periodic solutions of dry friction problems. Z. angew. Math. Phys. (ZAMP), 45 (1994), 53–60 | MR

[8] Deimling K., Hetzer G., Shen W.: Almost periodicity enforced by Coulomb friction. Adv. Differential Equations, 1 (1996), 265–281 | MR | Zbl

[9] den Hartog J. P.: Mechanische Schwingungen. 2nd ed., Springer-Verlag, Berlin, 1952 | Zbl

[10] Fečkan M.: Bifurcation of periodic solutions in differential inclusions. Appl. Math., 42 (1997), 369–393 | MR | Zbl

[11] Fečkan M.: Bifurcation from homoclinic to periodic solutions in singularly perturbed differential inclusions. Proc. Royal Soc. Edinburgh, 127A (1997), 727–753 | MR | Zbl

[12] Fečkan M.: Chaotic solutions in differential inclusions: Chaos in dry friction problems. Trans. Amer. Math. Soc. (to appear) | MR | Zbl

[13] Fečkan M.: Bifurcation from homoclinic to periodic solutions in ordinary differential equations with multivalued perturbations. J. Differential Equations, 130 (1996), 415-450 | MR

[14] Fečkan M.: Chaos in ordinary differential equations with multivalued perturbations: applications to dry friction problems. Proc. 2nd. World Congr. Nonl. Anal., Athens – 96, Nonl. Anal., Th., Meth., Appl., 30 (1997), 1355–1364 | MR | Zbl

[15] Fečkan M.: Periodic solutions in systems at resonances with small relay hysteresis. Math. Slovaca (to appear) | MR | Zbl

[16] Fečkan M., Gruendler J.: Bifurcation from homoclinic to periodic solutions in ordinary differential equations with singular perturbations. preprint

[17] Gruendler J.: Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations. J. Differential Equations, 122 (1996), 1–26 | MR

[18] Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983 | MR | Zbl

[19] Kauderer H.: Nichtlineare Mechanik. Springer-Verlag, Berlin, 1958 | MR | Zbl

[20] Kunze M.: On Lyapunov exponents for non-smooth dynamical systems with an application to a pendulum with dry friction. preprint, 1997 | MR

[21] Kunze M., Michaeli B.: On the rigorous applicability of Oseledet’s ergodic theorem to obtain Lyapunov exponents for non-smooth dynamical systems. submitted to the Proc. 2nd. Marrakesh Inter. Conf. Differential Eq., Ed. A. Vanderbauwhede, 1995

[22] Kunze M., Küpper T.: Qualitative bifurcation analysis of a non-smooth friction-oscillator model. Z. angew. Math. Phys. (ZAMP), 48 (1997), 87–101 | MR | Zbl

[23] Kunze M., Küpper T., You J.: On the application of KAM theory to non-smooth dynamical systems. Differential Equations, 139 (1997), 1–21 | MR

[24] Macki J. W., Nistri P., Zecca P.: Mathematical models for hysteresis. SIAM Review, 35 (1993), 94–123 | MR | Zbl

[25] Macki J. W., Nistri P., Zecca P.: Periodic oscillations in systems with hysteresis. Rocky Mountain J. Math. 22 (1992), 669–681 | MR | Zbl

[26] Popp K.: Some model problems showing stick-slip motion and chaos. ASME WAM, Proc. Symp. Friction-Induced Vibration, Chatter, Squeal and Chaos (R. A. Ibrahim and A. Soom, eds.) DE–49 (1992), 1–12

[27] Popp K., Hinrichs N., Oestreich M.: Dynamical behaviour of a friction oscillator with simultaneous self and external excitation. Sādhanā 20, 2–4 (1995), 627–654 | MR | Zbl

[28] Popp K., Stelter P.: Stick-slip vibrations and chaos. Philos. Trans. R. Soc. London A 332 (1990), 89–105 | Zbl

[29] Reissig R.: Erzwungene Schwingungen mit zäher Dämpfung und starker Gleitreibung. II. Math. Nachr. 12 (1954), 119–128 | MR

[30] Reissig R.: Über die Stabilität gedämpfter erzwungener Bewegungen mit linearer Rückstellkraft. Math. Nachr. 13 (1955), 231–245 | MR | Zbl

[31] Rumpel R. J.: Singularly perturbed relay control systems. preprint, 1996

[32] Rumpel R. J.: On the qualitative behaviour of nonlinear oscillators with dry friction. ZAMM 76 (1996), 665–666 | Zbl