Behaviour of solutions of linear differential equations with delay
Archivum mathematicum, Tome 34 (1998) no. 1, pp. 31-47
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This contribution is devoted to the problem of asymptotic behaviour of solutions of scalar linear differential equation with variable bounded delay of the form \[ \dot{x}(t)= -c(t)x(t-\tau (t)) \qquad \mathrm {{(^*)}}\] with positive function $c(t).$ Results concerning the structure of its solutions are obtained with the aid of properties of solutions of auxiliary homogeneous equation \[ \dot{y}(t)=\beta (t)[y(t)-y(t-\tau (t))] \] where the function $\beta (t)$ is positive. A result concerning the behaviour of solutions of Eq. (*) in critical case is given and, moreover, an analogy with behaviour of solutions of the second order ordinary differential equation \[ x^{\prime \prime }(t)+a(t)x(t)=0 \] for positive function $a(t)$ in critical case is considered.
This contribution is devoted to the problem of asymptotic behaviour of solutions of scalar linear differential equation with variable bounded delay of the form \[ \dot{x}(t)= -c(t)x(t-\tau (t)) \qquad \mathrm {{(^*)}}\] with positive function $c(t).$ Results concerning the structure of its solutions are obtained with the aid of properties of solutions of auxiliary homogeneous equation \[ \dot{y}(t)=\beta (t)[y(t)-y(t-\tau (t))] \] where the function $\beta (t)$ is positive. A result concerning the behaviour of solutions of Eq. (*) in critical case is given and, moreover, an analogy with behaviour of solutions of the second order ordinary differential equation \[ x^{\prime \prime }(t)+a(t)x(t)=0 \] for positive function $a(t)$ in critical case is considered.
Classification : 34K11, 34K25
Keywords: Positive solution; oscillating solution; convergent solution; linear differential equation with delay; topological principle of Ważewski (Rybakowski’s approach)
@article{ARM_1998_34_1_a4,
     author = {Dibl{\'\i}k, Josef},
     title = {Behaviour of solutions of linear differential equations with delay},
     journal = {Archivum mathematicum},
     pages = {31--47},
     year = {1998},
     volume = {34},
     number = {1},
     mrnumber = {1629652},
     zbl = {0914.34065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a4/}
}
TY  - JOUR
AU  - Diblík, Josef
TI  - Behaviour of solutions of linear differential equations with delay
JO  - Archivum mathematicum
PY  - 1998
SP  - 31
EP  - 47
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a4/
LA  - en
ID  - ARM_1998_34_1_a4
ER  - 
%0 Journal Article
%A Diblík, Josef
%T Behaviour of solutions of linear differential equations with delay
%J Archivum mathematicum
%D 1998
%P 31-47
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a4/
%G en
%F ARM_1998_34_1_a4
Diblík, Josef. Behaviour of solutions of linear differential equations with delay. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 31-47. http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a4/

[1] O. Arino M. Pituk: Convergence in asymptotically autonomous functional differential equations. University of Veszprém, Department of Mathematics and Computing, preprint No. 065 (1997). | MR

[2] F. V. Atkinson J. R. Haddock: Criteria for asymptotic constancy of solutions of functional differential equations. J. Math. Anal. Appl. 91 (1983), 410-423. | MR

[3] Li Bingtuan: Oscillation of first order delay differential equations. Proc. Amer. Math. Soc. 124 (1996), 3729-3737. | MR | Zbl

[4] Li Bingtuan: Oscillations of delay differential equations with variable coefficients. J. Math. Anal. Appl. 192 (1995), 312-321. | MR

[5] J. Čermák: On the asymptotic behaviour of solutions of certain functional differential equations. to appear in Math. Slovaca.

[6] J. Diblík: A criterion for convergence of solutions of homogeneous delay linear differential equations. submitted.

[7] J. Diblík: A criterion for existence of positive solutions of systems of retarded functional differential equations. to appear in Nonlin. Anal., T. M. A. | MR

[8] J. Diblík: Asymptotic representation of solutions of equation $\dot{y}(t)=\beta (t)[y(t)-y(t-\tau (t))],$. J. Math. Anal. Appl., 217 (1998), 200–215. | MR

[9] J. Diblík: Existence of solutions with prescribed asymptotic for certain systems retarded functional differential equations. Siberian Mathematical Journal, 32 (1991), (No 2), 222–226. | MR

[10] J. Diblík: Existence of decreasing positive solutions of a system of linear differential equations with delay. Proceedings of the Fifth International Colloquium on Differential Equations, VSP, Eds.: D. Bainov and V. Covachov, 83–94, 1995. | MR

[11] J. Diblík: Positive and oscillating solutions of differential equations with delay in critical case. J. Comput. Appl. Math., 88 (1998), 185–202. | MR

[12] A. Domoshnitsky M. Drakhlin: Nonoscillation of first order differential equations with delay. J. Math. Anal. Appl., 206 (1997), 254–269. | MR

[13] Y. Domshlak: Sturmian Comparison Method in Investigation of the Behavior of Solutions for Differential-Operator Equations. ELM, Baku, USSR, 1986. (In Russian) | MR

[14] Y. Domshlak I. P. Stavroulakis: Oscillation of first-order delay differential equations in a critical case. Applicable Analysis, 61 (1996), 359–371. | MR

[15] Á. Elbert I. P. Stavroulakis: Oscillation and non-oscillation criteria for delay differential equations. Proc. Amer. Math. Soc., 123 (1995), 1503–1510. | MR

[16] L. H. Erbe Q. Kong B. G. Zhang: Oscillation Theory for Functional Differential Equations. Marcel Dekker, Inc., 1995. | MR

[17] K. Gopalsamy: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, 1992. | MR | Zbl

[18] I. Györi G. Ladas: Oscillation Theory of Delay Differential Equations. Clarendon Press, 1991. | MR

[19] I. Györi M. Pituk: Comparison theorems and asymptotic equilibrium for delay differential and difference equations. Dynamic Systems and Application, 5 (1996), 277–302. | MR

[20] J. K. Hale S. M. V. Lunel: Introduction to Functional Differential Equations. Springer-Verlag, 1993. | MR

[21] P. Hartman: Ordinary Differential Equations. John Wiley & Sons, 1964. | MR | Zbl

[22] E. Hille: Non-oscillation theorems. Trans. Amer. Math. Soc., 64 (1948), 232–252. | MR | Zbl

[23] J. Jaroš I. P. Stavroulakis: Oscillation tests for delay equations. Technical Report No 265, University of Ioannina, Department of Mathematics, June 1996.

[24] A. Kneser: Untersuchungen über die reelen Nullstellen der Integrale linearen Differentialgleichungen. Math. Ann., 42 (1893), 409–503; J. Reine Angew. Math., 116 (1896), 178–212. | MR

[25] R. G. Koplatadze T. A. Chanturija: On the oscillatory and monotonic solutions of first order differential equations with deviating arguments. Differencial’nyje Uravnenija, 18 (1982), 1463–1465. (In Russian) | MR

[26] E. Kozakiewicz: Conditions for the absence of positive solutions of a first order differential inequality with a single delay. Archivum Mathematicum (Brno), 31 (1995), 291–297. | MR | Zbl

[27] E. Kozakiewicz: Conditions for the absence of positive solutions of a first order differential inequality with one continuously retarded argument. Berlin, preprint, (1997), 1–6. | MR

[28] E. Kozakiewicz: Über das asymptotische Verhalten der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument. Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 13:4 (1964), 577–589. | Zbl

[29] E. Kozakiewicz: Zur Abschätzung des Abklingens der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument. Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 15:5 (1966), 675–676. | MR | Zbl

[30] E. Kozakiewicz: Über die nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument. Math. Nachr., 32: 1/2 (1966), 107–113. | MR | Zbl

[31] T. Krisztin: A note on the convergence of the solutions of a linear functional differential equation. J. Math. Anal. Appl., 145 (1990), 17–25, (1990). | MR | Zbl

[32] A. D. Myshkis: Linear Differential Equations with Retarded Arguments. (2nd Ed.), Nauka, 1972. [In Russian] | MR

[33] F. Neuman: On equivalence of linear functional-differential equations. Results in Mathematics, 26 (1994), 354–359. | MR | Zbl

[34] F. Neuman: On transformations of differential equations and systems with deviating argument. Czechoslovak Mathematical Journal, 31 (106) (1981), 87–90. | MR | Zbl

[35] M. Pituk: Asymptotic characterization of solutions of functional differential equations. Bolletino U. M. I., 7, 7-B, (1993), 653–683. | MR | Zbl

[36] K. P. Rybakowski: Ważewski’s principle for retarded functional differential equations. Journal of Differential Equations, 36 (1980), 117–138. | MR | Zbl

[37] C. A. Swanson: Comparison and Oscillating Theory of Linear Differential Equations. Academic Press, 1968. | MR

[38] T. Ważewski: Sur un principle topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles. Ann. Soc. Polon. Math., 20 (1947), 279–313. | MR

[39] J. Werbowski: Oscillations of first order linear differential equations with delay. Proceedings of the Conference on Ordinary Differential Equations, Poprad (Slovak Republic), 87–94, 1996. | Zbl

[40] Yu Jiang, Yan Jurang: Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses. J. Math. Anal. Appl., 207 (1997), 388–396. | MR | Zbl

[41] S. N. Zhang: Asymptotic behaviour and structure of solutions for equation $\dot{x}(t)=p(t)[x(t)-x(t-1)],$. J. Anhui University (Natural Science Edition), 2 (1981), 11–21. (In Chinese)

[42] D. Zhou: On a problem of I. Györi. J. Math. Anal. Appl., 183 (1994), 620–623. | MR | Zbl