Keywords: Positive solution; oscillating solution; convergent solution; linear differential equation with delay; topological principle of Ważewski (Rybakowski’s approach)
@article{ARM_1998_34_1_a4,
author = {Dibl{\'\i}k, Josef},
title = {Behaviour of solutions of linear differential equations with delay},
journal = {Archivum mathematicum},
pages = {31--47},
year = {1998},
volume = {34},
number = {1},
mrnumber = {1629652},
zbl = {0914.34065},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a4/}
}
Diblík, Josef. Behaviour of solutions of linear differential equations with delay. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 31-47. http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a4/
[1] O. Arino M. Pituk: Convergence in asymptotically autonomous functional differential equations. University of Veszprém, Department of Mathematics and Computing, preprint No. 065 (1997). | MR
[2] F. V. Atkinson J. R. Haddock: Criteria for asymptotic constancy of solutions of functional differential equations. J. Math. Anal. Appl. 91 (1983), 410-423. | MR
[3] Li Bingtuan: Oscillation of first order delay differential equations. Proc. Amer. Math. Soc. 124 (1996), 3729-3737. | MR | Zbl
[4] Li Bingtuan: Oscillations of delay differential equations with variable coefficients. J. Math. Anal. Appl. 192 (1995), 312-321. | MR
[5] J. Čermák: On the asymptotic behaviour of solutions of certain functional differential equations. to appear in Math. Slovaca.
[6] J. Diblík: A criterion for convergence of solutions of homogeneous delay linear differential equations. submitted.
[7] J. Diblík: A criterion for existence of positive solutions of systems of retarded functional differential equations. to appear in Nonlin. Anal., T. M. A. | MR
[8] J. Diblík: Asymptotic representation of solutions of equation $\dot{y}(t)=\beta (t)[y(t)-y(t-\tau (t))],$. J. Math. Anal. Appl., 217 (1998), 200–215. | MR
[9] J. Diblík: Existence of solutions with prescribed asymptotic for certain systems retarded functional differential equations. Siberian Mathematical Journal, 32 (1991), (No 2), 222–226. | MR
[10] J. Diblík: Existence of decreasing positive solutions of a system of linear differential equations with delay. Proceedings of the Fifth International Colloquium on Differential Equations, VSP, Eds.: D. Bainov and V. Covachov, 83–94, 1995. | MR
[11] J. Diblík: Positive and oscillating solutions of differential equations with delay in critical case. J. Comput. Appl. Math., 88 (1998), 185–202. | MR
[12] A. Domoshnitsky M. Drakhlin: Nonoscillation of first order differential equations with delay. J. Math. Anal. Appl., 206 (1997), 254–269. | MR
[13] Y. Domshlak: Sturmian Comparison Method in Investigation of the Behavior of Solutions for Differential-Operator Equations. ELM, Baku, USSR, 1986. (In Russian) | MR
[14] Y. Domshlak I. P. Stavroulakis: Oscillation of first-order delay differential equations in a critical case. Applicable Analysis, 61 (1996), 359–371. | MR
[15] Á. Elbert I. P. Stavroulakis: Oscillation and non-oscillation criteria for delay differential equations. Proc. Amer. Math. Soc., 123 (1995), 1503–1510. | MR
[16] L. H. Erbe Q. Kong B. G. Zhang: Oscillation Theory for Functional Differential Equations. Marcel Dekker, Inc., 1995. | MR
[17] K. Gopalsamy: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, 1992. | MR | Zbl
[18] I. Györi G. Ladas: Oscillation Theory of Delay Differential Equations. Clarendon Press, 1991. | MR
[19] I. Györi M. Pituk: Comparison theorems and asymptotic equilibrium for delay differential and difference equations. Dynamic Systems and Application, 5 (1996), 277–302. | MR
[20] J. K. Hale S. M. V. Lunel: Introduction to Functional Differential Equations. Springer-Verlag, 1993. | MR
[21] P. Hartman: Ordinary Differential Equations. John Wiley & Sons, 1964. | MR | Zbl
[22] E. Hille: Non-oscillation theorems. Trans. Amer. Math. Soc., 64 (1948), 232–252. | MR | Zbl
[23] J. Jaroš I. P. Stavroulakis: Oscillation tests for delay equations. Technical Report No 265, University of Ioannina, Department of Mathematics, June 1996.
[24] A. Kneser: Untersuchungen über die reelen Nullstellen der Integrale linearen Differentialgleichungen. Math. Ann., 42 (1893), 409–503; J. Reine Angew. Math., 116 (1896), 178–212. | MR
[25] R. G. Koplatadze T. A. Chanturija: On the oscillatory and monotonic solutions of first order differential equations with deviating arguments. Differencial’nyje Uravnenija, 18 (1982), 1463–1465. (In Russian) | MR
[26] E. Kozakiewicz: Conditions for the absence of positive solutions of a first order differential inequality with a single delay. Archivum Mathematicum (Brno), 31 (1995), 291–297. | MR | Zbl
[27] E. Kozakiewicz: Conditions for the absence of positive solutions of a first order differential inequality with one continuously retarded argument. Berlin, preprint, (1997), 1–6. | MR
[28] E. Kozakiewicz: Über das asymptotische Verhalten der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument. Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 13:4 (1964), 577–589. | Zbl
[29] E. Kozakiewicz: Zur Abschätzung des Abklingens der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument. Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 15:5 (1966), 675–676. | MR | Zbl
[30] E. Kozakiewicz: Über die nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument. Math. Nachr., 32: 1/2 (1966), 107–113. | MR | Zbl
[31] T. Krisztin: A note on the convergence of the solutions of a linear functional differential equation. J. Math. Anal. Appl., 145 (1990), 17–25, (1990). | MR | Zbl
[32] A. D. Myshkis: Linear Differential Equations with Retarded Arguments. (2nd Ed.), Nauka, 1972. [In Russian] | MR
[33] F. Neuman: On equivalence of linear functional-differential equations. Results in Mathematics, 26 (1994), 354–359. | MR | Zbl
[34] F. Neuman: On transformations of differential equations and systems with deviating argument. Czechoslovak Mathematical Journal, 31 (106) (1981), 87–90. | MR | Zbl
[35] M. Pituk: Asymptotic characterization of solutions of functional differential equations. Bolletino U. M. I., 7, 7-B, (1993), 653–683. | MR | Zbl
[36] K. P. Rybakowski: Ważewski’s principle for retarded functional differential equations. Journal of Differential Equations, 36 (1980), 117–138. | MR | Zbl
[37] C. A. Swanson: Comparison and Oscillating Theory of Linear Differential Equations. Academic Press, 1968. | MR
[38] T. Ważewski: Sur un principle topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles. Ann. Soc. Polon. Math., 20 (1947), 279–313. | MR
[39] J. Werbowski: Oscillations of first order linear differential equations with delay. Proceedings of the Conference on Ordinary Differential Equations, Poprad (Slovak Republic), 87–94, 1996. | Zbl
[40] Yu Jiang, Yan Jurang: Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses. J. Math. Anal. Appl., 207 (1997), 388–396. | MR | Zbl
[41] S. N. Zhang: Asymptotic behaviour and structure of solutions for equation $\dot{x}(t)=p(t)[x(t)-x(t-1)],$. J. Anhui University (Natural Science Edition), 2 (1981), 11–21. (In Chinese)
[42] D. Zhou: On a problem of I. Györi. J. Math. Anal. Appl., 183 (1994), 620–623. | MR | Zbl