A new approach to the existence of almost everywhere solutions of nonlinear PDEs
Archivum mathematicum, Tome 34 (1998) no. 1, pp. 23-29 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We discuss the existence of almost everywhere solutions of nonlinear PDE’s of first (in the scalar and vectorial cases) and second order.
We discuss the existence of almost everywhere solutions of nonlinear PDE’s of first (in the scalar and vectorial cases) and second order.
Classification : 35D05, 35F20, 35F30
Keywords: A. e. solutions of nonlinear PDE’s; Baire category theorem; quasiconvex hull
@article{ARM_1998_34_1_a3,
     author = {Dacorogna, Bernard},
     title = {A new approach to the existence of almost everywhere solutions of nonlinear {PDEs}},
     journal = {Archivum mathematicum},
     pages = {23--29},
     year = {1998},
     volume = {34},
     number = {1},
     mrnumber = {1629648},
     zbl = {0911.35029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a3/}
}
TY  - JOUR
AU  - Dacorogna, Bernard
TI  - A new approach to the existence of almost everywhere solutions of nonlinear PDEs
JO  - Archivum mathematicum
PY  - 1998
SP  - 23
EP  - 29
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a3/
LA  - en
ID  - ARM_1998_34_1_a3
ER  - 
%0 Journal Article
%A Dacorogna, Bernard
%T A new approach to the existence of almost everywhere solutions of nonlinear PDEs
%J Archivum mathematicum
%D 1998
%P 23-29
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a3/
%G en
%F ARM_1998_34_1_a3
Dacorogna, Bernard. A new approach to the existence of almost everywhere solutions of nonlinear PDEs. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 23-29. http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a3/

[1] A. Bressan F. Flores: On total differential inclusions. Rend. Sem. Mat. Univ. Padova, 92 (1994), 9–16. | MR

[2] L. Caffarelli L. Nirenberg J. Spruck: The Dirichlet problem for nonlinear second order elliptic equations, I: Monge-Ampère equations. Comm. Pure Appl. Math., 37 (1984), 369–402. | MR

[3] P. Cardaliaguet B. Dacorogna W. Gangbo N. Georgy: Geometric restrictions for the existence of viscosity solutions. to appear in Annales Inst. H. Poincaré, Analyse Non Linéaire (1999). | MR

[4] P. Celada S. Perrotta: Functions with prescribed singular values of the gradient. preprint. | MR

[5] A. Cellina: On the differential inclusion $x^{\prime }\in \left[ -1,1\right] $. Atti. Accad. Naz. Lincei, Rend. Sci. Fis. Mat. Nat., 69 (1980), 1–6. | MR | Zbl

[6] A. Cellina S. Perrotta: On a problem of potential wells. J. Convex Anal. 2 (1995), 103–115. | MR

[7] M.G. Crandall H. Ishii P.L. Lions: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc., 27 (1992), 1–67. | MR

[8] B. Dacorogna: Direct methods in the calculus of variations. Applied Math. Sciences, 78, Springer, Berlin (1989). | MR | Zbl

[9] B. Dacorogna P. Marcellini: Existence of minimizers for non quasiconvex integrals. Arch. Rational Mech. Anal., 131 (1995), 359–399. | MR

[10] B. Dacorogna P. Marcellini: General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases. Acta Mathematica, 178 (1997), 1–37. | MR

[11] B. Dacorogna P. Marcellini: Cauchy-Dirichlet problem for first order nonlinear systems. to appear in Journal of Functional Analysis (1998). | MR

[12] B. Dacorogna P. Marcellini: Implicit second order partial differential equations. to appear in Annali Scuola Normale Sup. Pisa, special issue in memory of E. de Giorgi. | MR

[13] B. Dacorogna C. Tanteri: On the different convex hulls of sets involving singular values. to appear in Proceedings Royal Soc. Edinburgh. | MR

[14] F. S. De Blasi G. Pianigiani: Non convex valued differential inclusions in Banach spaces. J. Math. Anal. Appl., 157 (1991), 469–494. | MR

[15] F. S. De Blasi G. Pianigiani: On the Dirichlet problem for Hamilton-Jacobi equations. A Baire category approach. preprint.

[16] L. C. Evans: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm. Pure Appl. Math., 25 (1982), 333–363. | MR | Zbl

[17] S. N. Kruzkov : Generalized solutions of Hamilton-Jacobi equation of eikonal type. USSR Sbornik, 27 (1975), 406–446.

[18] P. L. Lions : Generalized solutions of Hamilton-Jacobi equations. Research Notes in Math.. 69, Pitman, London (1982). | MR | Zbl

[19] C. B. Morrey: Multiple integrals in the calculus of variations. Springer, Berlin (1966). | Zbl

[20] S. Müller V. Sverak: Attainment results for the two-well problem by convex integration. edited by J. Jost, International Press (1996), 239–251. | MR

[21] N. S. Trudinger: Fully nonlinear, uniformly elliptic equations under natural structure conditions. Trans. Amer. Math. Soc., 278 (1983), 751–769. | MR | Zbl