The nonlinear limit-point/limit-circle problem for higher order equations
Archivum mathematicum, Tome 34 (1998) no. 1, pp. 13-22
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We describe the nonlinear limit-point/limit-circle problem for the $n$-th order differential equation \[ y^{(n)} + r(t)f(y,y^{\prime }, \dots , y^{(n-1)}) = 0. \] The results are then applied to higher order linear and nonlinear equations. A discussion of fourth order equations is included, and some directions for further research are indicated.
We describe the nonlinear limit-point/limit-circle problem for the $n$-th order differential equation \[ y^{(n)} + r(t)f(y,y^{\prime }, \dots , y^{(n-1)}) = 0. \] The results are then applied to higher order linear and nonlinear equations. A discussion of fourth order equations is included, and some directions for further research are indicated.
Classification : 34B15, 34C05, 34C10, 34C15
Keywords: Higher order equations; nonlinear limit-point; nonlinear limit-circle
@article{ARM_1998_34_1_a2,
     author = {Bartu\v{s}ek, Miroslav and Do\v{s}l\'a, Zuzana and Graef, John R.},
     title = {The nonlinear limit-point/limit-circle problem for higher order equations},
     journal = {Archivum mathematicum},
     pages = {13--22},
     year = {1998},
     volume = {34},
     number = {1},
     mrnumber = {1629644},
     zbl = {0914.34023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a2/}
}
TY  - JOUR
AU  - Bartušek, Miroslav
AU  - Došlá, Zuzana
AU  - Graef, John R.
TI  - The nonlinear limit-point/limit-circle problem for higher order equations
JO  - Archivum mathematicum
PY  - 1998
SP  - 13
EP  - 22
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a2/
LA  - en
ID  - ARM_1998_34_1_a2
ER  - 
%0 Journal Article
%A Bartušek, Miroslav
%A Došlá, Zuzana
%A Graef, John R.
%T The nonlinear limit-point/limit-circle problem for higher order equations
%J Archivum mathematicum
%D 1998
%P 13-22
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a2/
%G en
%F ARM_1998_34_1_a2
Bartušek, Miroslav; Došlá, Zuzana; Graef, John R. The nonlinear limit-point/limit-circle problem for higher order equations. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a2/

[1] M. Bartušek, Z. Došlá: On the limit-point/limit-circle problem for nonlinear third order differential equations. Math. Nachr. 187 (1997), 5–18. | MR

[2] M. Bartušek Z. Došlá, and J. R. Graef: On $L^2$ and limit-point type solutions of fourth order differential equations. Appl. Anal. 60 (1996), 175–187. | MR

[3] M. Bartušek Z. Došlá, and J. R. Graef: Limit-point type results for nonlinear fourth order differential equations. Nonlinear Anal. 28 (1997), 779–792. | MR

[4] M. Bartušek Z. Došlá, and J. R. Graef: Nonlinear limit-point type solutions of $n$th order differential equations. J. Math. Anal. Appl. 209 (1997), 122–139. | MR

[5] N. Dunford, J. T. Schwartz: Linear Operators; Part II: Spectral Theory. Wiley, New York, (1963). | MR | Zbl

[6] M. S. P. Eastham: The limit-$2n$ case of symmetric differential operators of order $2n$. Proc. London Math. Soc. (3) 38 (1979), 272–294. | MR | Zbl

[7] M. S. P. Eastham, C. G. M. Grudniewicz: Asymptotic theory and deficiency indices for fourth and higher order self-adjoint equations: a simplified approach. in: Ordinary and Partial Differential Equations (W. N. Everitt and B. D. Sleeman, eds.), Lecture Notes in Math. Vol 846 Springer Verlag, New York, 1981, pp. 88–99. | MR | Zbl

[8] W. N. Everitt: On the limit-point classification of fourth-order differential equations. J. London Math. Soc. 44 (1969), 273–281. | MR | Zbl

[9] M. V. Fedorjuk: Asymptotic method in the theory of one-dimensional singular differential operators. Trudy Mosk. Matem. Obsch. 15 (1966), 296–345. | MR

[10] J. R. Graef: Limit circle criteria and related properties for nonlinear equations. J. Differential Equations 35 (1980), 319–338. | MR | Zbl

[11] J. R. Graef: Limit circle type results for sublinear equations. Pacific J. Math. 104 (1983), 85–94. | MR | Zbl

[12] J. R. Graef: Some asymptotic properties of solutions of $(a(t)x^{\prime })^{\prime } - q(t)f(x) = r(t)$. in: Differential Equations: Qualitative Theory (Szeged, 1984), Colloquia Mathematica Societatis János Bolyai, Vol. 47, North-Holland, Amsterdam, 1987, pp. 347–359. | MR

[13] J. R. Graef, P. W. Spikes: On the nonlinear limit-point/limit-circle problem. Nonlinear Anal. 7 (1983), 851–871. | MR | Zbl

[14] R. M. Kauffman T. T. Read, and A. Zettl: The Deficiency Index Problem for Powers of Ordinary Differential Expressions. Lecture Notes in Math. Vol. 621, Springer-Verlag, New York, 1977. | MR

[15] R. M. Kauffman: On the limit-$n$ classification of ordinary differential operators with positive coefficients. Proc. London Math. Soc. 35 (1977), 496–526. | MR | Zbl

[16] M. A. Naimark: Linear Differential Operators, Part II. George Harrap & Co., London, 1968. | Zbl

[17] R. B. Paris, A. D. Wood: On the $L^2$ nature of solutions of $n$-th order symmetric differential equations and McLeod’s conjecture. Proc. Roy. Soc. Edinburgh 90A (1981), 209–236. | MR | Zbl

[18] B. Schultze: On singular differential operators with positive coefficients. Proc. Roy. Soc. Edinburgh 10A (1992), 361–365. | MR | Zbl

[19] P. W. Spikes: On the integrability of solutions of perturbed nonlinear differential equations. Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 309–318. | MR

[20] P. W. Spikes: Criteria of limit circle type for nonlinear differential equations. SIAM J. Math. Anal. 10 (1979), 456–462. | MR | Zbl

[21] H. Weyl: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörige Entwicklungen willkürlicher Funktionen. Math. Ann. 68 (1910), 220–269. | MR