Quadratic functionals: positivity, oscillation, Rayleigh's principle
Archivum mathematicum, Tome 34 (1998) no. 1, pp. 143-151 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we give a survey on the theory of quadratic functionals. Particularly the relationships between positive definiteness and the asymptotic behaviour of Riccati matrix differential equations, and between the oscillation properties of linear Hamiltonian systems and Rayleigh’s principle are demonstrated. Moreover, the main tools form control theory (as e.g. characterization of strong observability), from the calculus of variations (as e.g. field theory and Picone’s identity), and from matrix analysis (as e.g. l’Hospital’s rule for matrices) are discussed.
In this paper we give a survey on the theory of quadratic functionals. Particularly the relationships between positive definiteness and the asymptotic behaviour of Riccati matrix differential equations, and between the oscillation properties of linear Hamiltonian systems and Rayleigh’s principle are demonstrated. Moreover, the main tools form control theory (as e.g. characterization of strong observability), from the calculus of variations (as e.g. field theory and Picone’s identity), and from matrix analysis (as e.g. l’Hospital’s rule for matrices) are discussed.
Classification : 34C10, 34H05, 49K15, 49N10, 93B07, 93C05, 93C15
Keywords: Quadratic functional; Hamiltonian system; Riccati equation; oscillation; observability; Rayleigh’s principle; eigenvalue problem; linear control system
@article{ARM_1998_34_1_a13,
     author = {Kratz, Werner},
     title = {Quadratic functionals: positivity, oscillation, {Rayleigh's} principle},
     journal = {Archivum mathematicum},
     pages = {143--151},
     year = {1998},
     volume = {34},
     number = {1},
     mrnumber = {1629688},
     zbl = {0921.49025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a13/}
}
TY  - JOUR
AU  - Kratz, Werner
TI  - Quadratic functionals: positivity, oscillation, Rayleigh's principle
JO  - Archivum mathematicum
PY  - 1998
SP  - 143
EP  - 151
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a13/
LA  - en
ID  - ARM_1998_34_1_a13
ER  - 
%0 Journal Article
%A Kratz, Werner
%T Quadratic functionals: positivity, oscillation, Rayleigh's principle
%J Archivum mathematicum
%D 1998
%P 143-151
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a13/
%G en
%F ARM_1998_34_1_a13
Kratz, Werner. Quadratic functionals: positivity, oscillation, Rayleigh's principle. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 143-151. http://geodesic.mathdoc.fr/item/ARM_1998_34_1_a13/

[1] C. D. Ahlbrandt: Equivalence of discrete Euler equations and discrete Hamiltonian systems. J. Math. Anal. Appl., 180 (1993), 498–517. | MR | Zbl

[2] C. D. Ahlbrandt S. L. Clark J. W. Hooker W. T. Patula: A discrete interpretation of Reid’s roundabout theorem for generalized differential systems. In: Computers and Mathematics with Applications, Comput. Math. Appl., 28 (1994), 11–21. | MR

[3] H. W. Alt: Lineare Funktionalanalysis. Springer Verlag, Berlin, 1985. | Zbl

[4] M. Bohner: Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions. J. Math. Anal. Appl., 199 (1996), 804–826. | MR

[5] Z. Došlá O. Došlý: Quadratic functionals with general boundary conditions. Appl. Math. Optim., 36 (1997), 243–262. | MR

[6] J. Klamka: Controllability of dynamical systems. Kluwer, Dordrecht, 1991. | MR | Zbl

[7] W. Kratz: A substitute of l’Hospital’s rule for matrices. Proc. Amer. Math. Soc., 99 (1987), 395–402. | MR | Zbl

[8] W. Kratz: A limit theorem for monotone matrix functions. Linear Algebra Appl., 194 (1993), 205–222. | MR

[9] W. Kratz: The asymptotic behaviour of Riccati matrix differential equations. Asymptotic Anal., 7 (1993), 67–80. | MR | Zbl

[10] W. Kratz: On the optimal linear regulator. Intern. J. Control, 60 (1994), 1005–1013. | MR | Zbl

[11] W. Kratz: An index theorem for monotone matrix-valued functions. SIAM J. Matrix Anal. Appl., 16 (1995), 113–122. | MR | Zbl

[12] W. Kratz: Characterization of strong observability and construction of an observer. Linear Algebra Appl., 221 (1995), 31–40. | MR | Zbl

[13] W. Kratz: Quadratic functionals in variational analysis and control theory. Akademie Verlag, Berlin, 1995. | MR | Zbl

[14] W. Kratz D. Liebscher: A local characterization of observability. Linear Algebra Appl., (1998), to appear. | MR

[15] W. Kratz D. Liebscher R. Schätzle: On the definiteness of quadratic functionals. Ann. Mat. Pura Appl. (4), (1998), to appear. | MR

[16] M. Morse: Variational analysis: Critical extremals and Sturmian theory. Wiley, New York, 1973.

[17] M. Picone: Sulle autosoluzioni e sulle formule di maggiorazione per gli integrali delle equazioni differenziali lineari ordinarie autoaggiunte. Math. Z., 28 (1928), 519–555. | MR

[18] W. T. Reid: Ordinary differential equations. Wiley, New York, 1971. | MR | Zbl

[19] W. T. Reid: Riccati differential equations. Academic Press, London, 1972. | MR | Zbl

[20] J. Simon: Compact sets in the space $L^p(0,t;B)$. Annali di Matematica Pura ed Applicata, 146 (1987), 65–96. | MR

[21] S. A. Swanson: Picone’s identity. Rend. Math., 8 (1975), 373–397. | MR | Zbl