On the structure of oscillatory solutions of a third order differential equation
Archivum mathematicum, Tome 33 (1997) no. 4, pp. 323-334 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of the paper is to study the structure of oscillatory solutions of a nonlinear third order differential equation $y^{\prime \prime \prime } + py^{\prime \prime }+ qy^\prime + rf (y, y^\prime , y^{\prime \prime })=0$.
The aim of the paper is to study the structure of oscillatory solutions of a nonlinear third order differential equation $y^{\prime \prime \prime } + py^{\prime \prime }+ qy^\prime + rf (y, y^\prime , y^{\prime \prime })=0$.
Classification : 34C10, 34C15
Keywords: oscillatory solutions; structure of solutions
@article{ARM_1997_33_4_a6,
     author = {Bartu\v{s}ek, Miroslav},
     title = {On the structure of oscillatory solutions of a third order differential equation},
     journal = {Archivum mathematicum},
     pages = {323--334},
     year = {1997},
     volume = {33},
     number = {4},
     mrnumber = {1601345},
     zbl = {0914.34027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a6/}
}
TY  - JOUR
AU  - Bartušek, Miroslav
TI  - On the structure of oscillatory solutions of a third order differential equation
JO  - Archivum mathematicum
PY  - 1997
SP  - 323
EP  - 334
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a6/
LA  - en
ID  - ARM_1997_33_4_a6
ER  - 
%0 Journal Article
%A Bartušek, Miroslav
%T On the structure of oscillatory solutions of a third order differential equation
%J Archivum mathematicum
%D 1997
%P 323-334
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a6/
%G en
%F ARM_1997_33_4_a6
Bartušek, Miroslav. On the structure of oscillatory solutions of a third order differential equation. Archivum mathematicum, Tome 33 (1997) no. 4, pp. 323-334. http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a6/

[1] Bartuçek M.: Asymptotic Properties of Oscillatory Solutions of Differential Equations of the $n$-th Order. Folia, FSN Univ. Masaryk. Brunen., Math. 3, Masaryk Univ., Brno, 1992. | MR

[2] Bartuçek M.: On the Structure of Solutions of a System of Three Differential Inequalities. Arch. Math. 30, No. 2 (1994), 117-130. | MR

[3] Bartuçek M., Doçl Z.: Oscillatory Criteria for Nonlinear Third Order Differential Equations with Quasiderivatives. Diff. Eq. and Dynam. Sys. 3, No. 3 (1995), 251-268. | MR

[4] Bartuçek M., Osička J.: Asymptotic Behaviour of Solutions of a Third-Order Nonlinear Differential Equations. Sub. for publ.

[5] Cecchi M., Marini M., Villari G.: Integral Criteria for a Classification of Solutions of Linear Differential Equations. J. Diff. Eq. 99 (1992), 381-397. | MR

[6] Cecchi M., Marini M.: Oscillation Results for Emden-Fowler Type Differential Equations. J. Math. Anal. Appl. Sub. for publ.

[7] Hartman P.: Ordinary Differential Equations. Boston, 1982. | MR | Zbl

[8] Moravskì L.: Some Oscillatory Properties of Solutions of Nonlinear Differential Equation of the Form $y^{\prime \prime }+ p(x)y^{\prime \prime }+ q(x)\, f(y^\prime )+ r(x)\, h(y)=0$. Arch. Math. XI (1975), No. 3, 139-150. | MR

[9] Singh Y.P.: Some Oscillatory Theorems for Third-Order non-Linear Differential Equations. Yokohama Math. J., 18 (1970), 77-86. | MR

[10] Waltman P: Oscillatory Criteria for Third Order Nonlinear Differential Equations. Pacif. J. Math., 18 (1966), No. 2, 385-389. | MR