Commutativity of associative rings through a Streb's classification
Archivum mathematicum, Tome 33 (1997) no. 4, pp. 315-321 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $m \geq 0, ~r \geq 0, ~s \geq 0, ~q \geq 0$ be fixed integers. Suppose that $R$ is an associative ring with unity $1$ in which for each $x,y \in R$ there exist polynomials $f(X) \in X^{2} \mbox{$Z \hspace{-2.2mm} Z$}[X], ~g(X), ~h(X) \in X \mbox{$Z \hspace{-2.2mm} Z$}[X]$ such that $\{ 1-g (yx^{m}) \} [x, ~x^{r}y ~-~ x^{s}f (y x^{m}) x^{q}] \{ 1-h(yx^{m}) \} ~=~ 0$. Then $R$ is commutative. Further, result is extended to the case when the integral exponents in the above property depend on the choice of $x$ and $y$. Finally, commutativity of one sided s-unital ring is also obtained when $R$ satisfies some related ring properties.
Let $m \geq 0, ~r \geq 0, ~s \geq 0, ~q \geq 0$ be fixed integers. Suppose that $R$ is an associative ring with unity $1$ in which for each $x,y \in R$ there exist polynomials $f(X) \in X^{2} \mbox{$Z \hspace{-2.2mm} Z$}[X], ~g(X), ~h(X) \in X \mbox{$Z \hspace{-2.2mm} Z$}[X]$ such that $\{ 1-g (yx^{m}) \} [x, ~x^{r}y ~-~ x^{s}f (y x^{m}) x^{q}] \{ 1-h(yx^{m}) \} ~=~ 0$. Then $R$ is commutative. Further, result is extended to the case when the integral exponents in the above property depend on the choice of $x$ and $y$. Finally, commutativity of one sided s-unital ring is also obtained when $R$ satisfies some related ring properties.
Classification : 16U70, 16U80
Keywords: factorsubring; s-unital ring; commutativity; commutator; associative ring
@article{ARM_1997_33_4_a5,
     author = {Ashraf, Mohammad},
     title = {Commutativity of associative rings through a {Streb's} classification},
     journal = {Archivum mathematicum},
     pages = {315--321},
     year = {1997},
     volume = {33},
     number = {4},
     mrnumber = {1601337},
     zbl = {0913.16017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a5/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
TI  - Commutativity of associative rings through a Streb's classification
JO  - Archivum mathematicum
PY  - 1997
SP  - 315
EP  - 321
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a5/
LA  - en
ID  - ARM_1997_33_4_a5
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%T Commutativity of associative rings through a Streb's classification
%J Archivum mathematicum
%D 1997
%P 315-321
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a5/
%G en
%F ARM_1997_33_4_a5
Ashraf, Mohammad. Commutativity of associative rings through a Streb's classification. Archivum mathematicum, Tome 33 (1997) no. 4, pp. 315-321. http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a5/

[1] Abujabal H. A. S., Ashraf M.: Some commutativity theorems through a Streb’s classification. Note Mat. 14, No.1 (1994) (to appear). | MR | Zbl

[2] Ashraf M.: On commutativity of one sided s-unital rings with some polynomial constraints. Indian J. Pure and Appl. Math. 25 (1994), 963-967. | MR | Zbl

[3] Bell H. E., Quadri M. A., Khan M. A.: Two commutativity theorems for rings. Rad. Mat. 3 (1994), 255-260. | MR

[4] Bell H. E., Quadri M. A., Ashraf M.: Commutativity of rings with some commutator constraints. Rad. Mat. 5 (1989), 223-230. | MR | Zbl

[5] Chacron M.: A commutativity theorem for rings. Proc. Amer. Math. Soc., 59 (1976), 211-216. | MR | Zbl

[6] Herstein I. N.: Two remakrs on commutativity of rings. Canad. J. Math. 7 (1955), 411-412. | MR

[7] Hirano Y., Kobayashi Y., Tominaga H.: Some polynomial identities and commutativity of s-unital rings. Math. J. Okayama Univ. 24 (1982), 7-13. | MR | Zbl

[8] Jacobson N.: Structure theory of algebraic algebras of bounded degree. Ann. Math. 46 (1945), 695-707. | MR

[9] Komatsu H., Tominaga H.: Chacron’s conditions and commutativity theorems. Math. J. Okayama Univ. 31 (1989), 101-120. | MR

[10] Komatsu H., Tominaga H.: Some commutativity theorems for left s-unital rings. Resultate Math. 15 (1989), 335-342. | MR | Zbl

[11] Komatsu H., Tominaga H.: Some commutativity conditions for rings with unity. Resultate Math. 19 (1991), 83-88. | MR | Zbl

[12] Komatsu H., Nishinaka T., Tominaga H.: On commutativity of rings. Rad. Math. 6 (1990), 303-311. | MR | Zbl

[13] Putcha M. S., Yaqub A.: Rings satisfying polynomial constraints. J. Math. Soc., Japan 25 (1973), 115-124. | MR | Zbl

[14] Quadri M. A., Ashraf M., Khan M. A.: A commutativity condition for semiprime ring-II. Bull. Austral. Math. Soc. 33 (1986), 71-73. | MR

[15] Quadri M. A., Ashraf M.: Commutativity of generalized Boolean rings. Publ. Math. (Debrecen) 35 (1988), 73-75. | MR | Zbl

[16] Quadri M. A., Khan M. A., Asma Ali: A commutativity theorem for rings with unity. Soochow J. Math. 15 (1989), 217-227. | MR

[17] Searcoid M. O., MacHale D.: Two elementary generalizations for Boolean rings. Amer. Math. Monthly 93 (1986), 121-122. | MR

[18] Streb W.: Zur struktur nichtkommutativer Ringe. Math. J. Okayama Univ. 31 (1989), 135-140. | MR | Zbl

[19] Tominaga H., Yaqub A.: Commutativity theorems for rings with constraints involving a commutative subset. Resultate Math. 11 (1987), 186-192. | MR