Oscillation of a second order delay differential equations
Archivum mathematicum, Tome 33 (1997) no. 4, pp. 309-314 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we study the oscillatory behavior of the solutions of the delay differential equation of the form \[ \left(\frac{1}{r(t)}y^{\prime }(t)\right)^{\prime }+p(t)y(\tau (t))= 0. \] The obtained results are applied to n-th order delay differential equation with quasi-derivatives of the form \[ L_nu(t)+p(t)u(\tau (t))=0. \]
In this paper, we study the oscillatory behavior of the solutions of the delay differential equation of the form \[ \left(\frac{1}{r(t)}y^{\prime }(t)\right)^{\prime }+p(t)y(\tau (t))= 0. \] The obtained results are applied to n-th order delay differential equation with quasi-derivatives of the form \[ L_nu(t)+p(t)u(\tau (t))=0. \]
Classification : 34C10, 34K11, 34K15
Keywords: oscillation; quasi-derivatives; delayed argument...
@article{ARM_1997_33_4_a4,
     author = {D\v{z}urina, Jozef},
     title = {Oscillation of a second order delay differential equations},
     journal = {Archivum mathematicum},
     pages = {309--314},
     year = {1997},
     volume = {33},
     number = {4},
     mrnumber = {1601333},
     zbl = {0915.34062},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a4/}
}
TY  - JOUR
AU  - Džurina, Jozef
TI  - Oscillation of a second order delay differential equations
JO  - Archivum mathematicum
PY  - 1997
SP  - 309
EP  - 314
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a4/
LA  - en
ID  - ARM_1997_33_4_a4
ER  - 
%0 Journal Article
%A Džurina, Jozef
%T Oscillation of a second order delay differential equations
%J Archivum mathematicum
%D 1997
%P 309-314
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a4/
%G en
%F ARM_1997_33_4_a4
Džurina, Jozef. Oscillation of a second order delay differential equations. Archivum mathematicum, Tome 33 (1997) no. 4, pp. 309-314. http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a4/

[1] Chanturija, T. A., Kiguradze, I. T.: Asymptotic properties of nonautonomous ordinary differential equations. Nauka, Moscow, 1990. (Russian)

[2] Džurina, J.: The oscillation of a differential equation of second order with deviating argument. Math. Slovaca 42 (1992), 317–324. | MR

[3] Džurina, J.: Comparison theorems for nonlinear ordinary differential equations. Mat. Slovaca 42 (1992), 299–315. | MR

[4] Erbe, L.: Oscillation criteria for second order nonlinear delay equation. Canad. Math. Bull 16 (1973), 49–56. | MR

[5] Hartmann, P.: Ordinary differential equations. John Willey & Sons, New York–London–Sydney, 1964. | MR

[6] Hille, E.: Non-oscillation theorems. Trans.Amer.Math.Soc. 64 (1948), 234–258. | MR | Zbl

[7] Ladde, G. S., Lakshmikhantam, V., Zhang, B. G.: Oscillation theory of differential equations with deviating arguments. Dekker, New York, 1987. | MR

[8] Kusano, T., Naito, M.: Oscillation criteria for general linear ordinary differential equations. Pacific J. Math. 92 (1981), 345–355. | MR

[9] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3 (1981), 509–532. | MR

[10] Ohriska, J.: On the oscillation of a linear differential equation of second order. Czech. Math. J. 39 (1989), 16–23. | MR | Zbl

[11] Ohriska, J.: Oscillation of second order delay and ordinary differential equations. Czech. Math. J. 34 (1984), 107–112. | MR

[12] Swanson, C. A.: Comparison and oscillation theory of linear differential equations. Acad. Press, New York-London, 1968. | MR | Zbl

[13] Shevelo, V. N., Varech, N. V.: On certain properties of solutions of differential equations with a delay. UMŽ 24 (1972). (Ukrainian)

[14] Tanaka, K.: Asymptotic analysis of odd order ordinary differential equations. Hiroshima Math. J. 10 (1980), 391–408. | MR | Zbl

[15] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations. Trans. Amer. Math.Soc 189 (1974), 319–327. | MR | Zbl