On a generalized Wiener-Hopf integral equation
Archivum mathematicum, Tome 33 (1997) no. 4, pp. 273-278
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\alpha $ be such that $0\alpha \frac{1}{2}$. In this note we use the Mittag-Leffler partial fractions expansion for $F_\alpha (\theta )=\Gamma \left(1-\alpha -\frac{\theta }{\pi }\right) \Gamma (\alpha )/ \Gamma \left( \alpha -\frac{\theta }{\pi }\right) \Gamma (1-\alpha )$ to obtain a solution of a Wiener-Hopf integral equation.
Let $\alpha $ be such that $0\alpha \frac{1}{2}$. In this note we use the Mittag-Leffler partial fractions expansion for $F_\alpha (\theta )=\Gamma \left(1-\alpha -\frac{\theta }{\pi }\right) \Gamma (\alpha )/ \Gamma \left( \alpha -\frac{\theta }{\pi }\right) \Gamma (1-\alpha )$ to obtain a solution of a Wiener-Hopf integral equation.
@article{ARM_1997_33_4_a1,
author = {McGregor, Malcolm T.},
title = {On a generalized {Wiener-Hopf} integral equation},
journal = {Archivum mathematicum},
pages = {273--278},
year = {1997},
volume = {33},
number = {4},
mrnumber = {1601321},
zbl = {0912.45003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a1/}
}
McGregor, Malcolm T. On a generalized Wiener-Hopf integral equation. Archivum mathematicum, Tome 33 (1997) no. 4, pp. 273-278. http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a1/
[1] Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons, New York, 1966. | MR | Zbl
[2] McGregor, M. T.: On a Wiener-Hopf integral equation. J. Integral Eqns. & Applns. (4)7 (1995), 475-483. | MR | Zbl
[3] Noble, B.: The Wiener-Hopf Technique. Pergamon Press, New York, 1958. | MR | Zbl