On periodic in the plane solutions of second order linear hyperbolic systems
Archivum mathematicum, Tome 33 (1997) no. 4, pp. 253-272 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Sufficient conditions for the problem \[ {\partial ^2 u\over \partial x\partial y}=P_0(x,y)u+ P_1(x,y){\partial u\over \partial x}+P_2(x,y){\partial u\over \partial y}+ q(x,y), u(x+\omega _1,y)=u(x,y),\quad u(x,y+\omega _2)=u(x,y) \] to have the Fredholm property and to be uniquely solvable are established, where $\omega _1$ and $\omega _2$ are positive constants and $P_j:R^2\rightarrow R^{n\times n}$ $(j=0,1,2)$ and $q:R^2\rightarrow R^n$ are continuous matrix and vector functions periodic in $x$ and $y$.
Sufficient conditions for the problem \[ {\partial ^2 u\over \partial x\partial y}=P_0(x,y)u+ P_1(x,y){\partial u\over \partial x}+P_2(x,y){\partial u\over \partial y}+ q(x,y), u(x+\omega _1,y)=u(x,y),\quad u(x,y+\omega _2)=u(x,y) \] to have the Fredholm property and to be uniquely solvable are established, where $\omega _1$ and $\omega _2$ are positive constants and $P_j:R^2\rightarrow R^{n\times n}$ $(j=0,1,2)$ and $q:R^2\rightarrow R^n$ are continuous matrix and vector functions periodic in $x$ and $y$.
Classification : 35B10, 35L10, 35L20, 35L55
Keywords: hyperbolic system; periodic solution; F property
@article{ARM_1997_33_4_a0,
     author = {Kiguradze, Tariel},
     title = {On periodic in the plane solutions of second order linear hyperbolic systems},
     journal = {Archivum mathematicum},
     pages = {253--272},
     year = {1997},
     volume = {33},
     number = {4},
     mrnumber = {1601317},
     zbl = {0911.35067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a0/}
}
TY  - JOUR
AU  - Kiguradze, Tariel
TI  - On periodic in the plane solutions of second order linear hyperbolic systems
JO  - Archivum mathematicum
PY  - 1997
SP  - 253
EP  - 272
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a0/
LA  - en
ID  - ARM_1997_33_4_a0
ER  - 
%0 Journal Article
%A Kiguradze, Tariel
%T On periodic in the plane solutions of second order linear hyperbolic systems
%J Archivum mathematicum
%D 1997
%P 253-272
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a0/
%G en
%F ARM_1997_33_4_a0
Kiguradze, Tariel. On periodic in the plane solutions of second order linear hyperbolic systems. Archivum mathematicum, Tome 33 (1997) no. 4, pp. 253-272. http://geodesic.mathdoc.fr/item/ARM_1997_33_4_a0/

[1] Aziz, A. K., Horak, M. G.: Periodic solutions of hyperbolic partial differential equations in the large. SIAM J. Math. Anal. 3 (1972), No. 1, 176-182. | MR

[2] Cesari, L.: Existence in the large of periodic solutions of hyperbolic partial differential equations. Arch. Rational Mech. Anal. 20 (1965), 170-190. | MR | Zbl

[3] Cesari, L.: Periodic solutions of nonlinear hyperbolic differential equations. Coll. Inter. Centre Nat. Rech. Sci. 148 (1965), 425-437.

[4] Cesari, L.: Smoothness properties of periodic solutions in the large of nonlinear hyperbolic differential systems. Funkcial. Ekvac. 9 (1966), 325-338. | MR | Zbl

[5] Hale, J. K.: Periodic solutions of a class of hyperbolic equations containing a smalls parameter. Arch. Rat. Mech. Anal. 23 (1967), No. 5, 380-398. | MR

[6] Hartman, P.: Ordinary differential equations. John Wiley & Sons, New York-London-Sydney, 1964. | MR | Zbl

[7] Kiguradze, T. I.: On the periodic boundary value problems for linear hyperbolic equations I. (Russian). Differentsial’nye Uravneniya 29 (1993), No. 2, 281-297. | MR

[8] Kiguradze, T. I.: On the periodic boundary value problems for linear hyperbolic equations II. (Russian). Differentsial’nye Uravneniya 29 (1993), No. 4, 637-645. | MR

[9] Kiguradze, T. I.: Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Memoirs on Differential Equations and Mathematical Physics 1 (1994), 1-144. | MR | Zbl

[10] Kiguradze, T. I.: On bounded in a strip solutions of the hyperbolic partial differential equations. Applicable Analysis 58 (1995), 199-214. | MR

[11] Kolmogorov, A. N., Fomin, S. V.: Elements of theory of functions and functional analysis (Russian). Nauka, Moscow, 1989. | MR

[12] Lusternik, L. A., Sobolev, V. I.: Elements of functional analysis (Russian). Nauka, Moscow, 1965. | MR

[13] Lakshmikantham, V., Pandit, S. G.: Periodic solutions of hyperbolic partial differential equations. Comput. and Math. 11 (1985), No. 1-3, 249-259. | MR

[14] Liu Baoping: The integral operator method for finding almost-periodic solutions of nonlinear wave equations. Nonlinear Anal. TMA 11 (1987), No. 5, 553-564. | MR | Zbl

[15] Žestkov, S. V.: On twice periodic solutions of quasilinear hyperbolic systems. Differentsial’nye Uravnenia 24 (1988), No. 12, 2164-2166.