Automorphisms of spatial curves
Archivum mathematicum, Tome 33 (1997) no. 3, pp. 213-243 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Automorphisms of curves $y= y(x)$, $z=z(x)$ in ${\bold R}^3$ are investigated; i.e. invertible transformations, where the coordinates of the transformed curve $\bar y=\bar y(\bar x)$, $\bar z= \bar z(\bar x)$ depend on the derivatives of the original one up to some finite order $m$. While in the two-dimensional space the problem is completely resolved (the only possible transformations are the well-known contact transformations), the three-dimensional case proves to be much more complicated. Therefore, results (in the form of some systems of partial differential equations for the functions, determining the automorphisms) only for the special case $\bar x =x$ and order $m\leq 2$ are obtained. Finally, the problem of infinitesimal transformations is briefly mentioned.
Automorphisms of curves $y= y(x)$, $z=z(x)$ in ${\bold R}^3$ are investigated; i.e. invertible transformations, where the coordinates of the transformed curve $\bar y=\bar y(\bar x)$, $\bar z= \bar z(\bar x)$ depend on the derivatives of the original one up to some finite order $m$. While in the two-dimensional space the problem is completely resolved (the only possible transformations are the well-known contact transformations), the three-dimensional case proves to be much more complicated. Therefore, results (in the form of some systems of partial differential equations for the functions, determining the automorphisms) only for the special case $\bar x =x$ and order $m\leq 2$ are obtained. Finally, the problem of infinitesimal transformations is briefly mentioned.
Classification : 58A17, 58A20, 58J72
Keywords: automorphisms of curves; infinite-dimensional space; contact forms
@article{ARM_1997_33_3_a3,
     author = {Brad\'a\v{c}, Ivan},
     title = {Automorphisms of spatial curves},
     journal = {Archivum mathematicum},
     pages = {213--243},
     year = {1997},
     volume = {33},
     number = {3},
     mrnumber = {1478774},
     zbl = {0915.58003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1997_33_3_a3/}
}
TY  - JOUR
AU  - Bradáč, Ivan
TI  - Automorphisms of spatial curves
JO  - Archivum mathematicum
PY  - 1997
SP  - 213
EP  - 243
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1997_33_3_a3/
LA  - en
ID  - ARM_1997_33_3_a3
ER  - 
%0 Journal Article
%A Bradáč, Ivan
%T Automorphisms of spatial curves
%J Archivum mathematicum
%D 1997
%P 213-243
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1997_33_3_a3/
%G en
%F ARM_1997_33_3_a3
Bradáč, Ivan. Automorphisms of spatial curves. Archivum mathematicum, Tome 33 (1997) no. 3, pp. 213-243. http://geodesic.mathdoc.fr/item/ARM_1997_33_3_a3/

[1] Lie S.: Geometrie der Berührungstransformationen. erster Band, Leipzig 1896. | Zbl

[2] Anderson R., Ibragimov N.: Lie-Bäcklund transformations in applications. Philadelphia 1979. | MR | Zbl

[3] Ibragimov N.: Transformation groups in mathematical physics. Moscow, Nauka, 1983 (Russian) | MR | Zbl

[4] Carathèodory C.: Variationsrechnung und partielle Differentialgleichungen erster Ordnung. Band I, Theorie der partielen Differentialgleichungen erster Ordnung, Zweite Auflage, Leipzig 1956. | MR | Zbl

[5] Shlomo Sternberg: Lectures on Differential Geometry. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1965. | MR

[6] Chrastina J.: From Elementary Algebra to Bäcklund Transformations. Czechoslovak Mathematical Journal, 40 (115) 1990, Praha. | MR | Zbl

[7] Chrastina J.: Formal theory of differential equations. (to appear). | MR | Zbl

[8] Chrastina J.: On the Equivalence of Variational Problems, I. Journal of Differential Equations, Vol. 98, No. 1, July 1992. | MR | Zbl

[9] Stormark O.: Formal and local solvability of partial differential equations. Trita-Mat-1989-11, Mathematics, ch. 1–12, Royal Institute of Technology, Stockholm 1989.

[10] Pressley A., Segal G.: Loop Groups. Clarendon Press, Oxford 1986, Russian translation Moscow, Mir, 1990. | MR | Zbl

[11] Cartan E.: Les systèmes différentiels extérieurs et leurs applications géometriques. Gauthier-Villars, Paris 1945, Russian translation Moscow University 1962. | MR | Zbl

[12] Olver P.: Applications of Lie Groups to Differential Equations. 1986, Springer-Verlag, Russian translation Moscow, Mir, 1989. | MR | Zbl

[13] Vinogradov A. M., Krasilščik I. S., Lygačin V. V.: Introduction into the geometry of nonlinear differential equations. Moscow 1986 (Russian).