Keywords: flow; diffeomorphism group; regular Lie group action; Frölicher-Kriegl differential calculus; 1-parameter group of bounded operators
@article{ARM_1996_32_4_a9,
author = {Zajtz, Andrzej},
title = {Calculus of flows on convenient manifolds},
journal = {Archivum mathematicum},
pages = {355--372},
year = {1996},
volume = {32},
number = {4},
mrnumber = {1441405},
zbl = {0881.58012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a9/}
}
Zajtz, Andrzej. Calculus of flows on convenient manifolds. Archivum mathematicum, Tome 32 (1996) no. 4, pp. 355-372. http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a9/
[1] Frölicher A., Kriegl A.: Linear spaces and differentiation theory. Pure and Applied Mathematics, J. Wiley, Chichester, 1988. | MR | Zbl
[2] Grabowski J.: Free subgroups of diffeomorphism groups. Fundamenta Math. 131(1988), 103-121. | MR | Zbl
[3] Grabowski J.: Derivative of the exponential mapping for infinite dimensional Lie groups. Annals Global Anal. Geom. 11(1993), 213-220. | MR | Zbl
[4] Hamilton R. S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7(1982), 65-222. | MR | Zbl
[5] Kolář I., Michor P., Slovák J.: Natural operations in differential geometry. Springer-Verlag, Berlin, Heidelberg, New York, 1993. | MR | Zbl
[6] Kriegl A., Michor P.: Regular infinite dimensional Lie groups. to appear, J. of Lie Theory, 37. | MR | Zbl
[7] Mather J.: Characterization of Anosov diffeomorphisms. Ind.Math., vol. 30, 5(1968), 473-483. | MR | Zbl
[8] Omori H., Maeda Y., Yoshioka A.: On regular Fréchet Lie groups IV. Definitions and fundamental theorems. Tokyo J. Math. 5(1982), 365-398. | MR
[9] Pazy A.: Semigroups of linear operators and applications to Partial Differential Equations. Springer-Verlag New York, 1983. | MR | Zbl