Calculus of flows on convenient manifolds
Archivum mathematicum, Tome 32 (1996) no. 4, pp. 355-372
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The study of diffeomorphism group actions requires methods of infinite dimensional analysis. Really convenient tools can be found in the Frölicher - Kriegl - Michor differentiation theory and its geometrical aspects. In terms of it we develop the calculus of various types of one parameter diffeomorphism groups in infinite dimensional spaces with smooth structure. Some spectral properties of the derivative of exponential mapping for manifolds are given.
The study of diffeomorphism group actions requires methods of infinite dimensional analysis. Really convenient tools can be found in the Frölicher - Kriegl - Michor differentiation theory and its geometrical aspects. In terms of it we develop the calculus of various types of one parameter diffeomorphism groups in infinite dimensional spaces with smooth structure. Some spectral properties of the derivative of exponential mapping for manifolds are given.
Classification : 22E65, 58B25, 58D05
Keywords: flow; diffeomorphism group; regular Lie group action; Frölicher-Kriegl differential calculus; 1-parameter group of bounded operators
@article{ARM_1996_32_4_a9,
     author = {Zajtz, Andrzej},
     title = {Calculus of flows on convenient manifolds},
     journal = {Archivum mathematicum},
     pages = {355--372},
     year = {1996},
     volume = {32},
     number = {4},
     mrnumber = {1441405},
     zbl = {0881.58012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a9/}
}
TY  - JOUR
AU  - Zajtz, Andrzej
TI  - Calculus of flows on convenient manifolds
JO  - Archivum mathematicum
PY  - 1996
SP  - 355
EP  - 372
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a9/
LA  - en
ID  - ARM_1996_32_4_a9
ER  - 
%0 Journal Article
%A Zajtz, Andrzej
%T Calculus of flows on convenient manifolds
%J Archivum mathematicum
%D 1996
%P 355-372
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a9/
%G en
%F ARM_1996_32_4_a9
Zajtz, Andrzej. Calculus of flows on convenient manifolds. Archivum mathematicum, Tome 32 (1996) no. 4, pp. 355-372. http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a9/

[1] Frölicher A., Kriegl A.: Linear spaces and differentiation theory. Pure and Applied Mathematics, J. Wiley, Chichester, 1988. | MR | Zbl

[2] Grabowski J.: Free subgroups of diffeomorphism groups. Fundamenta Math. 131(1988), 103-121. | MR | Zbl

[3] Grabowski J.: Derivative of the exponential mapping for infinite dimensional Lie groups. Annals Global Anal. Geom. 11(1993), 213-220. | MR | Zbl

[4] Hamilton R. S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7(1982), 65-222. | MR | Zbl

[5] Kolář I., Michor P., Slovák J.: Natural operations in differential geometry. Springer-Verlag, Berlin, Heidelberg, New York, 1993. | MR | Zbl

[6] Kriegl A., Michor P.: Regular infinite dimensional Lie groups. to appear, J. of Lie Theory, 37. | MR | Zbl

[7] Mather J.: Characterization of Anosov diffeomorphisms. Ind.Math., vol. 30, 5(1968), 473-483. | MR | Zbl

[8] Omori H., Maeda Y., Yoshioka A.: On regular Fréchet Lie groups IV. Definitions and fundamental theorems. Tokyo J. Math. 5(1982), 365-398. | MR

[9] Pazy A.: Semigroups of linear operators and applications to Partial Differential Equations. Springer-Verlag New York, 1983. | MR | Zbl