Keywords: product preserving functors; convenient vector spaces; $C^\infty$-algebras
@article{ARM_1996_32_4_a4,
author = {Kriegl, Andreas and Michor, Peter W.},
title = {Product preserving functors of infinite-dimensional manifolds},
journal = {Archivum mathematicum},
pages = {289--306},
year = {1996},
volume = {32},
number = {4},
mrnumber = {1441400},
zbl = {0881.58010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a4/}
}
Kriegl, Andreas; Michor, Peter W. Product preserving functors of infinite-dimensional manifolds. Archivum mathematicum, Tome 32 (1996) no. 4, pp. 289-306. http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a4/
[1] Eck, D. J.: Product preserving functors on smooth manifolds. J. Pure and Applied Algebra 42 (1986), 133–140. | MR | Zbl
[2] Frölicher, A., Kriegl, A.: Linear spaces and differentiation theory. Pure and Applied Mathematics, J. Wiley, Chichester, 1988. | MR
[3] Kainz, G., Kriegl, A., Michor, P. W.: $C^\infty $-algebras from the functional analytic viewpoint. J. pure appl. Algebra 46 (1987), 89-107. | MR
[4] Kainz, G., Michor, P. W.: Natural transformations in differential geometry. Czechoslovak Math. J. 37 (1987), 584-607. | MR
[5] Kolář, I.: Covariant approach to natural transformations of Weil functors. Comment. Math. Univ. Carolin. 27 (1986), 723–729. | MR
[6] Kolář, I.,; Michor, P. W., Slovák, J.: Natural operations in differential geometry. Springer-Verlag, Berlin, Heidelberg, New York, 1993, pp. vi+434. | MR
[7] Kriegl, A., Michor, P. W.: A convenient setting for real analytic mappings. Acta Mathematica 165 (1990), 105–159. | MR
[8] Kriegl, A., Michor, P. W.: Aspects of the theory of infinite dimensional manifolds. Differential Geometry and Applications 1 (1991), 159–176. | MR
[9] Kriegl, A., Michor, P. W.: Regular infinite dimensional Lie groups. to appear, J. Lie Theory (1997). | MR
[10] Kriegl, A., Michor, P. W.: The Convenient Setting for Global Analysis. to appear, Surveys and Monographs, AMS, Providence, 1997. | MR
[11] Kriegl, A., Nel, L. D.: A convenient setting for holomorphy. Cahiers Top. Géo. Diff. 26 (1985), 273–309. | MR
[12] Lawvere, F. W.: Categorical dynamics. Lectures given 1967 at the University of Chicago, reprinted in, Topos Theoretical Methods in Geometry, A. Kock (ed.), Aarhus Math. Inst. Var. Publ. Series 30, Aarhus Universitet, 1979. | MR | Zbl
[13] Luciano, O. O.: Categories of multiplicative functors and Weil’s infinitely near points. Nagoya Math. J. 109 (1988), 69–89. | MR | Zbl
[14] Michor, P. W., Vanžura, J.: Characterizing algebras of smooth functions on manifolds. to appear, Comm. Math. Univ. Carolinae (Prague).
[15] Milnor, J.: Remarks on infinite dimensional Lie groups. Relativity, Groups, and Topology II, Les Houches, 1983, B.S. DeWitt, R. Stora, Eds., Elsevier, Amsterdam, 1984. | MR | Zbl
[16] Moerdijk, I., Reyes G. E.: Models for smooth infinitesimal analysis. Springer-Verlag, Heidelberg Berlin, 1991. | MR
[17] Moerdijk, I., Reyes G. E.: Rings of smooth funcions and their localizations, I. J. Algebra 99 (1986), 324–336. | MR
[18] Morimoto, A.: Prolongations of connections to bundles of infinitely near points. J. Diff. Geom. 11 (1976), 479–498. | MR
[19] Moerdijk, I., Ngo Van Que, Reyes G. E.: Rings of smooth funcions and their localizations, II. Mathematical logic and theoretical computer science, D.W. Kueker, E.G.K. Lopez-Escobar, C.H. Smith (eds.), Marcel Dekker, New York, Basel, 1987. | MR
[20] Omori, H., Maeda, Y., Yoshioka, A.: On regular Fréchet Lie groups IV. Definitions and fundamental theorems. Tokyo J. Math. 5 (1982), 365–398. | MR
[21] Weil, A.: Théorie des points proches sur les variétés differentielles. Colloque de topologie et géométrie différentielle, Strasbourg, 1953, pp. 111–117. | MR