Translation of natural operators on manifolds with AHS-structures
Archivum mathematicum, Tome 32 (1996) no. 4, pp. 249-266
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce an explicit procedure to generate natural operators on manifolds with almost Hermitian symmetric structures and work out several examples of this procedure in the case of almost Grassmannian structures.
We introduce an explicit procedure to generate natural operators on manifolds with almost Hermitian symmetric structures and work out several examples of this procedure in the case of almost Grassmannian structures.
Classification : 22E47, 53C10, 53C30, 58H10, 58J70
Keywords: invariant operator; AHS structure; paraconformal structure; almost Grassmannian structure; translation principle
@article{ARM_1996_32_4_a1,
     author = {\v{C}ap, Andreas},
     title = {Translation of natural operators on manifolds with {AHS-structures}},
     journal = {Archivum mathematicum},
     pages = {249--266},
     year = {1996},
     volume = {32},
     number = {4},
     mrnumber = {1441397},
     zbl = {0881.58075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a1/}
}
TY  - JOUR
AU  - Čap, Andreas
TI  - Translation of natural operators on manifolds with AHS-structures
JO  - Archivum mathematicum
PY  - 1996
SP  - 249
EP  - 266
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a1/
LA  - en
ID  - ARM_1996_32_4_a1
ER  - 
%0 Journal Article
%A Čap, Andreas
%T Translation of natural operators on manifolds with AHS-structures
%J Archivum mathematicum
%D 1996
%P 249-266
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a1/
%G en
%F ARM_1996_32_4_a1
Čap, Andreas. Translation of natural operators on manifolds with AHS-structures. Archivum mathematicum, Tome 32 (1996) no. 4, pp. 249-266. http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a1/

[1] Bailey, T. N.; Eastwood, M. G.: Complex paraconformal manifolds: their differential geometry and twistor theory. Forum Math. 3 (1991), 61–103. | MR

[2] Bailey, T. N.; Eastwood, M. G.; Gover, A. R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. 24 (1994), 1191–1217. | MR

[3] Baston, R. J.: Verma modules and differential conformal invariants. J. Differential Geometry 32 (1990), 851–898. | MR | Zbl

[4] Baston, R. J.; Eastwood, M. G.: The Penrose Transform: Its Interaction with Representation Theory. Oxford University Press, 1989. | MR

[5] Čap, A.: A note on endomorphisms of modules over reductive Lie groups and algebras. Proceedings of the Conference Differential Geometry and Applications, Brno, 1995, pp. 127–131, electronically available at www.emis.de.

[CSS1] Čap, A.; Slovák, J.; Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures, I. invariant differentiation. Preprint ESI 186 (1994), electronically available at www.esi.ac.at. | MR

[CSS2] Čap, A.; Slovák, J.; Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures, II. normal Cartan connections. Preprint ESI 194 (1995), electronically available at www.esi.ac.at. | MR

[8] Eastwood, M. G.: Notes on conformal differential geometry. to appear in Rendiconti Circ. Mat. Palermo, Proceedings of the 15th Winter School on Geometry an Physics, Srní, 1995. | MR | Zbl

[9] Eastwood, M. G.; Rice, J. W.: Conformally invariant differential operators on Minkowski space and their curved analogues. Commun. Math. Phys. 109 (1987), 207–228. | MR

[10] Eastwood, M. G.; Slovák, J.: Semiholonomic Verma modules. Preprint ESI 376 (1996), electronically available at www.esi.ac.at. | MR

[11] Ehresmann, C.: Extension du calcul des jets aux jets non holonomes. C. R. Acad. Sci. Paris 239 (1954), 1762–1764. | MR | Zbl

[12] Ochiai, T.: Geometry associated with semisimple flat homogeneous spaces. Trans. Amer. Math. Soc. 152 (1970), 159–193. | MR | Zbl