Keywords: invariant operator; AHS structure; paraconformal structure; almost Grassmannian structure; translation principle
@article{ARM_1996_32_4_a1,
author = {\v{C}ap, Andreas},
title = {Translation of natural operators on manifolds with {AHS-structures}},
journal = {Archivum mathematicum},
pages = {249--266},
year = {1996},
volume = {32},
number = {4},
mrnumber = {1441397},
zbl = {0881.58075},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a1/}
}
Čap, Andreas. Translation of natural operators on manifolds with AHS-structures. Archivum mathematicum, Tome 32 (1996) no. 4, pp. 249-266. http://geodesic.mathdoc.fr/item/ARM_1996_32_4_a1/
[1] Bailey, T. N.; Eastwood, M. G.: Complex paraconformal manifolds: their differential geometry and twistor theory. Forum Math. 3 (1991), 61–103. | MR
[2] Bailey, T. N.; Eastwood, M. G.; Gover, A. R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. 24 (1994), 1191–1217. | MR
[3] Baston, R. J.: Verma modules and differential conformal invariants. J. Differential Geometry 32 (1990), 851–898. | MR | Zbl
[4] Baston, R. J.; Eastwood, M. G.: The Penrose Transform: Its Interaction with Representation Theory. Oxford University Press, 1989. | MR
[5] Čap, A.: A note on endomorphisms of modules over reductive Lie groups and algebras. Proceedings of the Conference Differential Geometry and Applications, Brno, 1995, pp. 127–131, electronically available at www.emis.de.
[CSS1] Čap, A.; Slovák, J.; Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures, I. invariant differentiation. Preprint ESI 186 (1994), electronically available at www.esi.ac.at. | MR
[CSS2] Čap, A.; Slovák, J.; Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures, II. normal Cartan connections. Preprint ESI 194 (1995), electronically available at www.esi.ac.at. | MR
[8] Eastwood, M. G.: Notes on conformal differential geometry. to appear in Rendiconti Circ. Mat. Palermo, Proceedings of the 15th Winter School on Geometry an Physics, Srní, 1995. | MR | Zbl
[9] Eastwood, M. G.; Rice, J. W.: Conformally invariant differential operators on Minkowski space and their curved analogues. Commun. Math. Phys. 109 (1987), 207–228. | MR
[10] Eastwood, M. G.; Slovák, J.: Semiholonomic Verma modules. Preprint ESI 376 (1996), electronically available at www.esi.ac.at. | MR
[11] Ehresmann, C.: Extension du calcul des jets aux jets non holonomes. C. R. Acad. Sci. Paris 239 (1954), 1762–1764. | MR | Zbl
[12] Ochiai, T.: Geometry associated with semisimple flat homogeneous spaces. Trans. Amer. Math. Soc. 152 (1970), 159–193. | MR | Zbl