Characterizations of inner product structures involving the radius of the inscribed or circumscribed circumference
Archivum mathematicum, Tome 32 (1996) no. 3, pp. 233-239
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define the radius of the inscribed and circumscribed circumferences in a triangle located in a real normed space and we obtain new characterizations of inner product spaces.
We define the radius of the inscribed and circumscribed circumferences in a triangle located in a real normed space and we obtain new characterizations of inner product spaces.
Classification : 46B20, 46C05, 46C15, 51M04, 52A10
Keywords: inner product space; norm derivative $\rho ^{\prime }_{\pm }$; bisectrix; perpendicular bisector
@article{ARM_1996_32_3_a6,
     author = {Alsina, C. and Guijarro, P. and Tom\'as, M. S.},
     title = {Characterizations of inner product structures involving the radius of the inscribed or circumscribed circumference},
     journal = {Archivum mathematicum},
     pages = {233--239},
     year = {1996},
     volume = {32},
     number = {3},
     mrnumber = {1421858},
     zbl = {0909.46020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a6/}
}
TY  - JOUR
AU  - Alsina, C.
AU  - Guijarro, P.
AU  - Tomás, M. S.
TI  - Characterizations of inner product structures involving the radius of the inscribed or circumscribed circumference
JO  - Archivum mathematicum
PY  - 1996
SP  - 233
EP  - 239
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a6/
LA  - en
ID  - ARM_1996_32_3_a6
ER  - 
%0 Journal Article
%A Alsina, C.
%A Guijarro, P.
%A Tomás, M. S.
%T Characterizations of inner product structures involving the radius of the inscribed or circumscribed circumference
%J Archivum mathematicum
%D 1996
%P 233-239
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a6/
%G en
%F ARM_1996_32_3_a6
Alsina, C.; Guijarro, P.; Tomás, M. S. Characterizations of inner product structures involving the radius of the inscribed or circumscribed circumference. Archivum mathematicum, Tome 32 (1996) no. 3, pp. 233-239. http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a6/

[1] Alsina, C., Guijarro, P. and Tom s, M. S.: On heights in real normed spaces and characterizations of inner product structures. Jour. Int. Math. & Comp. Sci. Vol. 6, N. 2, 151-159 (1993). | MR

[2] Alsina, C., Guijarro, P. and Tom s, M. S.: A characterization of inner product spaces based on a property of height’s transform. Arch. Math. 61 (1993), 560-566. | MR

[3] Alsina, C. and Garcia Roig, J. L.: On a functional equation characterizing inner product spaces. Publ. Math. Debrecen 39 (1991), 299-304. | MR

[4] Alsina, C., Guijarro, P. and Tom s, M. S.: Some remarkable lines of a triangle in real normed spaces and characterizations of inner product structures. (Accepted for publication in Aequationes Mathematicae).

[5] Amir, D.: Characterization of inner product spaces. Basel-Boston (1986). | MR | Zbl

[6] James, R. C.: Inner products in normed linear spaces. Bull. Amer. Math. Soc. Vol. 53 (1947), 559-566. | MR | Zbl

[7] Tapia, R. A.: A characterization of inner product spaces. Proc. Amer. Math. Soc. Vol. 41 (1973), 569-574. | MR | Zbl