Keywords: evolution triple; compact embedding; pseudomonotone operator; demicontinuity; coercive operator; dominated convergence theorem
@article{ARM_1996_32_3_a4,
author = {Kandilakis, Dimitrios A. and Papageorgiou, Nikolaos S.},
title = {Periodic solutions for nonlinear evolution inclusions},
journal = {Archivum mathematicum},
pages = {195--209},
year = {1996},
volume = {32},
number = {3},
mrnumber = {1421856},
zbl = {0908.34043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a4/}
}
Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S. Periodic solutions for nonlinear evolution inclusions. Archivum mathematicum, Tome 32 (1996) no. 3, pp. 195-209. http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a4/
[1] Ash, R.: Real Analysis and Probability. Academic Press, New York (1972). | MR
[2] Becker, R. I.: Periodic solutions of semilinear equations of evolution of compact type. J. Math. Anal. Appl. 82 (1981), 33-48. | MR | Zbl
[3] Brezis, H.: Operateurs Maximaux Monotones. North Holland, Amsterdam (1973). | Zbl
[4] Browder, F.: Existence of periodic solutions for nonlinear equations of evolution. Proc. Nat. Acad. Sci. USA 53 (1965), 1100-1103. | MR | Zbl
[5] Browder, F.: Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Nat. Acad. Sci. USA 74 (1977), 2659-2661. | MR
[6] Chang, K.-C.: Variational methods for nondifferentiable functions and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102-129. | MR
[7] Blasi, F. S., Myjak, J.: On continuous approximations for multifunctions. Pacific J. Math. 123 (1986), 9-31. | MR
[8] Diestel, J., Uhl, J. J.: Vector Measures. Math. Surveys, 15, AMS Providence, Rhode Island (1977). | MR
[9] Goebel, K., Kirk, W.: Topics in Metric Fixed Point Theory. Cambridge Univ. Press, Cambridge (1990). | MR
[10] Gossez, J. P., Mustonen, V.: Pseudomonotonicity and the Leray-Lions condition. Differential and Integral Equations 6 (1993), 37-45. | MR
[11] Hirano, N.: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces. Proc. AMS 120 (1994), 185-192. | MR | Zbl
[12] Hu, S., Papageorgiou, N. S.: On the existence of periodic solutions for a class of nonlinear evolution inclusions. Bolletino UMI 7-B (1993), 591-605. | MR
[13] Hu, S., Papageorgiou, N. S.: Galerkin approximations for nonlinear evolution inclusions. Comm. Math. Univ. Carolinae 35 (1994), 705-720. | MR
[14] Lions, J. L.: Quelques Methods de Resolution des Problemes aux Limites Nonlineaires. Dunod, Paris (1969).
[15] Papageorgiou, N. S.: Convergence theorems for Banach space valued integrable multifunctions. Inter. J. Math. and Math. Sci. 10 (1987), 433-464. | MR | Zbl
[16] Papageorgiou, N. S.: On measurable multifunctions with applications to random multivalued equations. Math. Japonica 32 (1987), 437-464. | MR | Zbl
[17] Prüss, J.: Periodic solutions for semilinear evolution equations. Nonl. Anal. TMA 3 (1979), 221-235.
[18] Ton, B.-A.: Nonlinear evolution equations in Banach spaces. Proc. AMS 109 (1990), 653-661.
[19] Vrabie, I.: Periodic solutions for nonlinear evolution equations in a Banach space. Proc. AMS 109 (1990), 653-661. | MR | Zbl
[20] Wagner, D.: Survey of measurable selection theorems. SIAM J. Control Opt. 15 (1977), 859-903. | MR | Zbl
[21] Zeidler, E.: Nonlinear Functinal Analysis and its Applications. Springer-Verlag, New York (1990).