Oscillation and nonoscillation of Emden-Fowler type equations of second order
Archivum mathematicum, Tome 32 (1996) no. 3, pp. 181-193 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Oscillation and nonoscillation criteria are established for the equation $$u''+p(t)|u|^{\alpha}|u'|^{1-\alpha}\operatorname{sgn} u=0,$$ where $\alpha\in ]0,1]$, and $p:[0,+\infty[\to [0,+\infty[$ is a locally summable function.
Oscillation and nonoscillation criteria are established for the equation $$u''+p(t)|u|^{\alpha}|u'|^{1-\alpha}\operatorname{sgn} u=0,$$ where $\alpha\in ]0,1]$, and $p:[0,+\infty[\to [0,+\infty[$ is a locally summable function.
Classification : 34C10, 34C15
Keywords: Edmen-Fowler type equation of second order; oscillatory and nonoscillatory solutions; oscillatory and nonoscillatory equations
@article{ARM_1996_32_3_a3,
     author = {Lomtatidze, A.},
     title = {Oscillation and nonoscillation of {Emden-Fowler} type equations of second order},
     journal = {Archivum mathematicum},
     pages = {181--193},
     year = {1996},
     volume = {32},
     number = {3},
     mrnumber = {1421855},
     zbl = {0908.34023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a3/}
}
TY  - JOUR
AU  - Lomtatidze, A.
TI  - Oscillation and nonoscillation of Emden-Fowler type equations of second order
JO  - Archivum mathematicum
PY  - 1996
SP  - 181
EP  - 193
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a3/
LA  - en
ID  - ARM_1996_32_3_a3
ER  - 
%0 Journal Article
%A Lomtatidze, A.
%T Oscillation and nonoscillation of Emden-Fowler type equations of second order
%J Archivum mathematicum
%D 1996
%P 181-193
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a3/
%G en
%F ARM_1996_32_3_a3
Lomtatidze, A. Oscillation and nonoscillation of Emden-Fowler type equations of second order. Archivum mathematicum, Tome 32 (1996) no. 3, pp. 181-193. http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a3/

[1] Fite W. B.: Concerning the zeros of the solutions of certain differential equations. Trans. Amer. Math. Soc., vol. 19 (1917), pp. 341–352. | MR

[2] Hille E.: Nonoscillation theorems. Trans. Amer. Math. Soc., vol. 64 (1948), pp. 234–252. | MR

[3] Del Pino M., Elgueta M., Manasevich R.: Generalized Hartman’s oscillation result for $(|x^{\prime }|^{p-2}x^{\prime })^{\prime }+c(t)|x|^{p-2}=0, p>1.$. Houston Journal of Math., vol. 17 , No 1, (1991) pp. 63–70. | MR | Zbl

[4] Lomtatidze A.: Oscillation and nonoscillation criteria for second order linear differential equation. Georgian Math. J., vol. 3, No. 2, (1997) pp. 129-138. | MR

[5] Kiguradze I.T., Shekhter B. L.: Singular boundary value problems for second-order differential equations. in: “Current Problems in Mathematics: Newest Results”, Vol. 3, pp. 3–103, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuzn. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987. [in Russian] | MR