Keywords: ABS methods; pivoting algorithm; Hankel matrix; linear equations
@article{ARM_1996_32_3_a2,
author = {K\'alnov\'a, Gabriela},
title = {Pivoting algorithm in class of {ABS} methods},
journal = {Archivum mathematicum},
pages = {167--180},
year = {1996},
volume = {32},
number = {3},
mrnumber = {1421854},
zbl = {0906.65028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a2/}
}
Kálnová, Gabriela. Pivoting algorithm in class of ABS methods. Archivum mathematicum, Tome 32 (1996) no. 3, pp. 167-180. http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a2/
[1] Abaffy, J., Broyden, C.G., Spedicato, E.: A class of direct methods for linear equations. Numer.Math. 45 (1984), 361–376. | MR
[2] Abaffy, J., Spedicato, E.: ABS projection algorithms mathematical techniques for linear and nonlinear equations. Ellis Horwood, Chichester, 1989. | MR
[3] Bodon, E.: Numerical experiments with ABS algorithms on upper banded systems of linear equations. (1992), Quaderno DMSIA 17/92, University of Bergamo.
[4] Bodon, E.: Numerical experiments with ABS algorithms on banded systems of linear equations. (1992), Quaderno DMSIA 18/92, University of Bergamo.
[5] Bodon, E.: Numerical experiments with Gauss-ABS algorithms on tridiagonal systems of linear equations. (1992), Quaderno DMSIA 31/92, University of Bergamo.
[6] Bodon, E., Spedicato, E.: Numerical evaluation of the implicit LU, LQ and QU algorithms in the ABS class. (1992), Quaderno DMSIA 28/90, University of Bergamo.
[7] Deng, N., Vespucci, M.T.: Experiments with the ABS implici t Gauss-Cholesky algorithm on nested dissection matrices. (1991), Technical Report 1/69, Roma.
[8] Golub, G.H., Van Loan, Ch.F.: Matrix computation. The Johns Hopkins University Press, Baltimore and London, 1989.
[9] Phua, K. H.: Solving sparse linear systems by an ABS-metho d that corresponds to LU-decomposition. BIT 28 (1988), 709–718. | MR
[10] Rissanen, J.: Solution of linear equations with Hankel an d Toeplitz matrices. Numer.Math. 22 (1974), 361–366. | MR