Pivoting algorithm in class of ABS methods
Archivum mathematicum, Tome 32 (1996) no. 3, pp. 167-180
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Summary: The paper deals with a pivoting modification of the algorithm in the class of ABS methods. Numerical experiments compare this pivoting modification with the fundamental version. A hybrid algorithm for the solution of the linear system with the Hankel matrix is introduced.
Summary: The paper deals with a pivoting modification of the algorithm in the class of ABS methods. Numerical experiments compare this pivoting modification with the fundamental version. A hybrid algorithm for the solution of the linear system with the Hankel matrix is introduced.
Classification : 65F05
Keywords: ABS methods; pivoting algorithm; Hankel matrix; linear equations
@article{ARM_1996_32_3_a2,
     author = {K\'alnov\'a, Gabriela},
     title = {Pivoting algorithm in class of {ABS} methods},
     journal = {Archivum mathematicum},
     pages = {167--180},
     year = {1996},
     volume = {32},
     number = {3},
     mrnumber = {1421854},
     zbl = {0906.65028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a2/}
}
TY  - JOUR
AU  - Kálnová, Gabriela
TI  - Pivoting algorithm in class of ABS methods
JO  - Archivum mathematicum
PY  - 1996
SP  - 167
EP  - 180
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a2/
LA  - en
ID  - ARM_1996_32_3_a2
ER  - 
%0 Journal Article
%A Kálnová, Gabriela
%T Pivoting algorithm in class of ABS methods
%J Archivum mathematicum
%D 1996
%P 167-180
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a2/
%G en
%F ARM_1996_32_3_a2
Kálnová, Gabriela. Pivoting algorithm in class of ABS methods. Archivum mathematicum, Tome 32 (1996) no. 3, pp. 167-180. http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a2/

[1] Abaffy, J., Broyden, C.G., Spedicato, E.: A class of direct methods for linear equations. Numer.Math. 45 (1984), 361–376. | MR

[2] Abaffy, J., Spedicato, E.: ABS projection algorithms mathematical techniques for linear and nonlinear equations. Ellis Horwood, Chichester, 1989. | MR

[3] Bodon, E.: Numerical experiments with ABS algorithms on upper banded systems of linear equations. (1992), Quaderno DMSIA 17/92, University of Bergamo.

[4] Bodon, E.: Numerical experiments with ABS algorithms on banded systems of linear equations. (1992), Quaderno DMSIA 18/92, University of Bergamo.

[5] Bodon, E.: Numerical experiments with Gauss-ABS algorithms on tridiagonal systems of linear equations. (1992), Quaderno DMSIA 31/92, University of Bergamo.

[6] Bodon, E., Spedicato, E.: Numerical evaluation of the implicit LU, LQ and QU algorithms in the ABS class. (1992), Quaderno DMSIA 28/90, University of Bergamo.

[7] Deng, N., Vespucci, M.T.: Experiments with the ABS implici t Gauss-Cholesky algorithm on nested dissection matrices. (1991), Technical Report 1/69, Roma.

[8] Golub, G.H., Van Loan, Ch.F.: Matrix computation. The Johns Hopkins University Press, Baltimore and London, 1989.

[9] Phua, K. H.: Solving sparse linear systems by an ABS-metho d that corresponds to LU-decomposition. BIT 28 (1988), 709–718. | MR

[10] Rissanen, J.: Solution of linear equations with Hankel an d Toeplitz matrices. Numer.Math. 22 (1974), 361–366. | MR