Semimodularity in lower continuous strongly dually atomic lattices
Archivum mathematicum, Tome 32 (1996) no. 3, pp. 163-165
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For lattices of finite length there are many characterizations of semimodularity (see, for instance, Grätzer [3] and Stern [6]–[8]). The present paper deals with some conditions characterizing semimodularity in lower continuous strongly dually atomic lattices. We give here a generalization of results of paper [7].
For lattices of finite length there are many characterizations of semimodularity (see, for instance, Grätzer [3] and Stern [6]–[8]). The present paper deals with some conditions characterizing semimodularity in lower continuous strongly dually atomic lattices. We give here a generalization of results of paper [7].
Classification : 06B35, 06C10
Keywords: lower continuous lattices; strongly dually atomic lattices; semimodular and atomic lattices
@article{ARM_1996_32_3_a1,
     author = {Walendziak, Andrzej},
     title = {Semimodularity in lower continuous strongly dually atomic lattices},
     journal = {Archivum mathematicum},
     pages = {163--165},
     year = {1996},
     volume = {32},
     number = {3},
     mrnumber = {1421853},
     zbl = {0902.06011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a1/}
}
TY  - JOUR
AU  - Walendziak, Andrzej
TI  - Semimodularity in lower continuous strongly dually atomic lattices
JO  - Archivum mathematicum
PY  - 1996
SP  - 163
EP  - 165
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a1/
LA  - en
ID  - ARM_1996_32_3_a1
ER  - 
%0 Journal Article
%A Walendziak, Andrzej
%T Semimodularity in lower continuous strongly dually atomic lattices
%J Archivum mathematicum
%D 1996
%P 163-165
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a1/
%G en
%F ARM_1996_32_3_a1
Walendziak, Andrzej. Semimodularity in lower continuous strongly dually atomic lattices. Archivum mathematicum, Tome 32 (1996) no. 3, pp. 163-165. http://geodesic.mathdoc.fr/item/ARM_1996_32_3_a1/

[1] Birkhoff, G.: Lattice Theory. 3rd edition, American Mathematical Society, Providence, RI, 1967. | MR | Zbl

[2] Crawley, P., Dilworth, R. P.: Algebraic Theory of Lattices. Prentice-Hall, Englewood Cliffs (N.J.), 1973.

[3] Grätzer, G.: General Lattice Theory. Birhäuser Basel, 1978. | MR

[4] Richter, G.: The Kuroš-Ore Theorem, finite and infinite decompositions. Studia Sci. Math. Hungar., 17(1982), 243-250. | MR

[5] Stern, M.: Exchange properties in lattices of finite length. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 31 (1982), 15-26. | MR | Zbl

[6] Stern, M.: Semimodularity in lattices of finite length. Discrete Math. 41 (1982), 287-293. | MR | Zbl

[7] Stern, M.: Characterizations of semimodularity. Studia Sci. Math. Hungar. 25 (1990), 93-96. | MR | Zbl

[8] Stern, M.: Semimodular Lattices. B. G. Teubner Verlagsgesellschaft, Stuttgart-Leipzig, 1991. | MR | Zbl