Local isometry classes of Riemannian $3$-manifolds with constant Ricci eigenvalues $\rho\sb 1=\rho\sb 2\neq \rho\sb 3 > 0$
Archivum mathematicum, Tome 32 (1996) no. 2, pp. 137-145
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{ARM_1996_32_2_a5,
author = {Kowalski, Old\v{r}ich and Sekizawa, Masami},
title = {Local isometry classes of {Riemannian} $3$-manifolds with constant {Ricci} eigenvalues $\rho\sb 1=\rho\sb 2\neq \rho\sb 3 > 0$},
journal = {Archivum mathematicum},
pages = {137--145},
year = {1996},
volume = {32},
number = {2},
mrnumber = {1407345},
zbl = {0903.53015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_2_a5/}
}
TY - JOUR AU - Kowalski, Oldřich AU - Sekizawa, Masami TI - Local isometry classes of Riemannian $3$-manifolds with constant Ricci eigenvalues $\rho\sb 1=\rho\sb 2\neq \rho\sb 3 > 0$ JO - Archivum mathematicum PY - 1996 SP - 137 EP - 145 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/ARM_1996_32_2_a5/ LA - en ID - ARM_1996_32_2_a5 ER -
%0 Journal Article %A Kowalski, Oldřich %A Sekizawa, Masami %T Local isometry classes of Riemannian $3$-manifolds with constant Ricci eigenvalues $\rho\sb 1=\rho\sb 2\neq \rho\sb 3 > 0$ %J Archivum mathematicum %D 1996 %P 137-145 %V 32 %N 2 %U http://geodesic.mathdoc.fr/item/ARM_1996_32_2_a5/ %G en %F ARM_1996_32_2_a5
Kowalski, Oldřich; Sekizawa, Masami. Local isometry classes of Riemannian $3$-manifolds with constant Ricci eigenvalues $\rho\sb 1=\rho\sb 2\neq \rho\sb 3 > 0$. Archivum mathematicum, Tome 32 (1996) no. 2, pp. 137-145. http://geodesic.mathdoc.fr/item/ARM_1996_32_2_a5/
[1] P.Bueken: Three-dimensional Riemannian manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. preprint, 1995, to appear in J.Math.Phys. | MR
[2] O.Kowalski: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. preprint, 1991, to appear in Czech Math.J. | MR
[3] O.Kowalski: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. Nagoya Math.J. 132(1993), 1-36. | MR
[4] O.Kowalski, M.Sekizawa: Riemannian 3-manifolds with $c$-conullity two. preprint, 1995, to appear in Bolletino U.M.I., 1996. | MR
[5] D.McManus: Riemannian three-metrics with degenerate Ricci tensor. J.Math.Phys. 36(1995), 362-369. | MR