Standard homogeneous Einstein manifolds and Diophantine equations
Archivum mathematicum, Tome 32 (1996) no. 2, pp. 123-136 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some new examples of standard homogeneous Einstein manifolds with semisimple transitive groups of motions and semisimple isotropy subgroups are constructed. For the construction of these examples the solutions of some systems of Diophantine equations are used.
Some new examples of standard homogeneous Einstein manifolds with semisimple transitive groups of motions and semisimple isotropy subgroups are constructed. For the construction of these examples the solutions of some systems of Diophantine equations are used.
Classification : 11D09, 53C25, 53C30
Keywords: Riemannian manifolds; homogeneous spaces; Einstein metrics
@article{ARM_1996_32_2_a4,
     author = {Nikonorov, Yurii G. and Rodionov, Eugene D.},
     title = {Standard homogeneous {Einstein} manifolds and {Diophantine} equations},
     journal = {Archivum mathematicum},
     pages = {123--136},
     year = {1996},
     volume = {32},
     number = {2},
     mrnumber = {1407344},
     zbl = {0903.53033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1996_32_2_a4/}
}
TY  - JOUR
AU  - Nikonorov, Yurii G.
AU  - Rodionov, Eugene D.
TI  - Standard homogeneous Einstein manifolds and Diophantine equations
JO  - Archivum mathematicum
PY  - 1996
SP  - 123
EP  - 136
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1996_32_2_a4/
LA  - en
ID  - ARM_1996_32_2_a4
ER  - 
%0 Journal Article
%A Nikonorov, Yurii G.
%A Rodionov, Eugene D.
%T Standard homogeneous Einstein manifolds and Diophantine equations
%J Archivum mathematicum
%D 1996
%P 123-136
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1996_32_2_a4/
%G en
%F ARM_1996_32_2_a4
Nikonorov, Yurii G.; Rodionov, Eugene D. Standard homogeneous Einstein manifolds and Diophantine equations. Archivum mathematicum, Tome 32 (1996) no. 2, pp. 123-136. http://geodesic.mathdoc.fr/item/ARM_1996_32_2_a4/

[1] Cartan É.: Geometry of Lie groups and symmetric spaces. IL, Moscow, 1949 (Russian).

[2] Manturov O. V.: Homogeneous Riemannian manifolds with irreducible isotropy group. Trudy Sem. Vektor. Tensor. Anal. Vyp. 13 (1966), 68-145 (Russian). | MR

[3] Joseph A. Wolf: The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math., 120 (1968), 59-148. | MR

[4] McKenzie Y. W., Ziller W.: On normal homogeneous Einstein manifolds. Ann. Sci. Ecole Norm. Sup. (4) 18 (1985), 563-633. | MR | Zbl

[5] Rodionov E. D.: Standard homogeneous Einstein manifolds. Russian Acad. Sci. Dokl. Math. 47 (1993), no.1, 37-40. | MR | Zbl

[6] Rodionov E. D.: Homogeneous Riemannian manifolds with Einstein metrics. Doctor dissertation in Mathematics, Institute of Mathematics, Novosibirsk, 1994.

[7] Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory. Berlin: Springer-Verlag, 1993. | MR

[8] Dynkin E. B.: Semi-simple Subalgebras of Semi-simple Lie Algebras. Transl. Amer. Math. Soc., Series 2, 6 (1957), 111-244.